Rocket.Chat.ReactNative/ios/Pods/Flipper-Folly/folly/experimental/EliasFanoCoding.h

842 lines
26 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @author Philip Pronin (philipp@fb.com)
*
* Based on the paper by Sebastiano Vigna,
* "Quasi-succinct indices" (arxiv:1206.4300).
*/
#pragma once
#include <algorithm>
#include <cstdlib>
#include <limits>
#include <type_traits>
#include <folly/Likely.h>
#include <folly/Portability.h>
#include <folly/Range.h>
#include <folly/experimental/CodingDetail.h>
#include <folly/experimental/Instructions.h>
#include <folly/experimental/Select64.h>
#include <folly/lang/Assume.h>
#include <folly/lang/Bits.h>
#include <glog/logging.h>
#if !FOLLY_X64
#error EliasFanoCoding.h requires x86_64
#endif
namespace folly {
namespace compression {
static_assert(kIsLittleEndian, "EliasFanoCoding.h requires little endianness");
constexpr size_t kCacheLineSize = 64;
template <class Pointer>
struct EliasFanoCompressedListBase {
EliasFanoCompressedListBase() = default;
template <class OtherPointer>
EliasFanoCompressedListBase(
const EliasFanoCompressedListBase<OtherPointer>& other)
: size(other.size),
numLowerBits(other.numLowerBits),
upperSizeBytes(other.upperSizeBytes),
data(other.data),
skipPointers(reinterpret_cast<Pointer>(other.skipPointers)),
forwardPointers(reinterpret_cast<Pointer>(other.forwardPointers)),
lower(reinterpret_cast<Pointer>(other.lower)),
upper(reinterpret_cast<Pointer>(other.upper)) {}
template <class T = Pointer>
auto free() -> decltype(::free(T(nullptr))) {
return ::free(data.data());
}
size_t size = 0;
uint8_t numLowerBits = 0;
size_t upperSizeBytes = 0;
// WARNING: EliasFanoCompressedList has no ownership of data. The 7 bytes
// following the last byte should be readable if kUpperFirst = false, 8 bytes
// otherwise.
folly::Range<Pointer> data;
Pointer skipPointers = nullptr;
Pointer forwardPointers = nullptr;
Pointer lower = nullptr;
Pointer upper = nullptr;
};
typedef EliasFanoCompressedListBase<const uint8_t*> EliasFanoCompressedList;
typedef EliasFanoCompressedListBase<uint8_t*> MutableEliasFanoCompressedList;
template <
class Value,
// SkipValue must be wide enough to be able to represent the list length.
class SkipValue = uint64_t,
size_t kSkipQuantum = 0, // 0 = disabled
size_t kForwardQuantum = 0, // 0 = disabled
bool kUpperFirst = false>
struct EliasFanoEncoderV2 {
static_assert(
std::is_integral<Value>::value && std::is_unsigned<Value>::value,
"Value should be unsigned integral");
typedef EliasFanoCompressedList CompressedList;
typedef MutableEliasFanoCompressedList MutableCompressedList;
typedef Value ValueType;
typedef SkipValue SkipValueType;
struct Layout;
static constexpr size_t skipQuantum = kSkipQuantum;
static constexpr size_t forwardQuantum = kForwardQuantum;
static uint8_t defaultNumLowerBits(size_t upperBound, size_t size) {
if (UNLIKELY(size == 0 || upperBound < size)) {
return 0;
}
// Result that should be returned is "floor(log(upperBound / size))".
// In order to avoid expensive division, we rely on
// "floor(a) - floor(b) - 1 <= floor(a - b) <= floor(a) - floor(b)".
// Assuming "candidate = floor(log(upperBound)) - floor(log(upperBound))",
// then result is either "candidate - 1" or "candidate".
auto candidate = folly::findLastSet(upperBound) - folly::findLastSet(size);
// NOTE: As size != 0, "candidate" is always < 64.
return (size > (upperBound >> candidate)) ? candidate - 1 : candidate;
}
// Requires: input range (begin, end) is sorted (encoding
// crashes if it's not).
// WARNING: encode() mallocates EliasFanoCompressedList::data. As
// EliasFanoCompressedList has no ownership of it, you need to call
// free() explicitly.
template <class RandomAccessIterator>
static MutableCompressedList encode(
RandomAccessIterator begin,
RandomAccessIterator end) {
if (begin == end) {
return MutableCompressedList();
}
EliasFanoEncoderV2 encoder(size_t(end - begin), *(end - 1));
for (; begin != end; ++begin) {
encoder.add(*begin);
}
return encoder.finish();
}
explicit EliasFanoEncoderV2(const MutableCompressedList& result)
: lower_(result.lower),
upper_(result.upper),
skipPointers_(reinterpret_cast<SkipValueType*>(result.skipPointers)),
forwardPointers_(
reinterpret_cast<SkipValueType*>(result.forwardPointers)),
result_(result) {
std::fill(result.data.begin(), result.data.end(), '\0');
}
EliasFanoEncoderV2(size_t size, ValueType upperBound)
: EliasFanoEncoderV2(
Layout::fromUpperBoundAndSize(upperBound, size).allocList()) {}
void add(ValueType value) {
CHECK_LT(value, std::numeric_limits<ValueType>::max());
CHECK_GE(value, lastValue_);
const auto numLowerBits = result_.numLowerBits;
const ValueType upperBits = value >> numLowerBits;
// Upper sequence consists of upperBits 0-bits and (size_ + 1) 1-bits.
const size_t pos = upperBits + size_;
upper_[pos / 8] |= 1U << (pos % 8);
// Append numLowerBits bits to lower sequence.
if (numLowerBits != 0) {
const ValueType lowerBits = value & ((ValueType(1) << numLowerBits) - 1);
writeBits56(lower_, size_ * numLowerBits, numLowerBits, lowerBits);
}
fillSkipPointersUpTo(upperBits);
if /* constexpr */ (forwardQuantum != 0) {
if ((size_ + 1) % forwardQuantum == 0) {
const auto k = size_ / forwardQuantum;
// Store the number of preceding 0-bits.
forwardPointers_[k] = upperBits;
}
}
lastValue_ = value;
++size_;
}
const MutableCompressedList& finish() {
CHECK_EQ(size_, result_.size);
const ValueType upperBitsUniverse =
(8 * result_.upperSizeBytes - result_.size);
if (upperBitsUniverse > 0) {
// Populate skip pointers up to the universe upper bound.
fillSkipPointersUpTo(upperBitsUniverse - 1);
}
return result_;
}
private:
void fillSkipPointersUpTo(ValueType fillBoundary) {
if /* constexpr */ (skipQuantum != 0) {
while ((skipPointersSize_ + 1) * skipQuantum <= fillBoundary) {
// Store the number of preceding 1-bits.
skipPointers_[skipPointersSize_++] = static_cast<SkipValueType>(size_);
}
}
}
// Writes value (with len up to 56 bits) to data starting at pos-th bit.
static void
writeBits56(unsigned char* data, size_t pos, uint8_t len, uint64_t value) {
DCHECK_LE(uint32_t(len), 56);
DCHECK_EQ(0, value & ~((uint64_t(1) << len) - 1));
unsigned char* const ptr = data + (pos / 8);
uint64_t ptrv = folly::loadUnaligned<uint64_t>(ptr);
ptrv |= value << (pos % 8);
folly::storeUnaligned<uint64_t>(ptr, ptrv);
}
unsigned char* lower_ = nullptr;
unsigned char* upper_ = nullptr;
SkipValueType* skipPointers_ = nullptr;
SkipValueType* forwardPointers_ = nullptr;
ValueType lastValue_ = 0;
size_t size_ = 0;
size_t skipPointersSize_ = 0;
MutableCompressedList result_;
};
template <
class Value,
class SkipValue,
size_t kSkipQuantum,
size_t kForwardQuantum,
bool kUpperFirst>
struct EliasFanoEncoderV2<
Value,
SkipValue,
kSkipQuantum,
kForwardQuantum,
kUpperFirst>::Layout {
static Layout fromUpperBoundAndSize(size_t upperBound, size_t size) {
// numLowerBits can be at most 56 because of detail::writeBits56.
const uint8_t numLowerBits =
std::min(defaultNumLowerBits(upperBound, size), uint8_t(56));
// *** Upper bits.
// Upper bits are stored using unary delta encoding.
// For example, (3 5 5 9) will be encoded as 1000011001000_2.
const size_t upperSizeBits =
(upperBound >> numLowerBits) + // Number of 0-bits to be stored.
size; // 1-bits.
const size_t upper = (upperSizeBits + 7) / 8;
// *** Validity checks.
// Shift by numLowerBits must be valid.
CHECK_LT(numLowerBits, 8 * sizeof(Value));
CHECK_LT(size, std::numeric_limits<SkipValueType>::max());
CHECK_LT(
upperBound >> numLowerBits, std::numeric_limits<SkipValueType>::max());
return fromInternalSizes(numLowerBits, upper, size);
}
static Layout
fromInternalSizes(uint8_t numLowerBits, size_t upper, size_t size) {
Layout layout;
layout.size = size;
layout.numLowerBits = numLowerBits;
layout.lower = (numLowerBits * size + 7) / 8;
layout.upper = upper;
// *** Skip pointers.
// Store (1-indexed) position of every skipQuantum-th
// 0-bit in upper bits sequence.
if /* constexpr */ (skipQuantum != 0) {
// 8 * upper is used here instead of upperSizeBits, as that is
// more serialization-friendly way (upperSizeBits doesn't need
// to be known by this function, unlike upper).
size_t numSkipPointers = (8 * upper - size) / skipQuantum;
layout.skipPointers = numSkipPointers * sizeof(SkipValueType);
}
// *** Forward pointers.
// Store (1-indexed) position of every forwardQuantum-th
// 1-bit in upper bits sequence.
if /* constexpr */ (forwardQuantum != 0) {
size_t numForwardPointers = size / forwardQuantum;
layout.forwardPointers = numForwardPointers * sizeof(SkipValueType);
}
return layout;
}
size_t bytes() const {
return lower + upper + skipPointers + forwardPointers;
}
template <class Range>
EliasFanoCompressedListBase<typename Range::iterator> openList(
Range& buf) const {
EliasFanoCompressedListBase<typename Range::iterator> result;
result.size = size;
result.numLowerBits = numLowerBits;
result.upperSizeBytes = upper;
result.data = buf.subpiece(0, bytes());
auto advance = [&](size_t n) {
auto begin = buf.data();
buf.advance(n);
return begin;
};
result.skipPointers = advance(skipPointers);
result.forwardPointers = advance(forwardPointers);
if /* constexpr */ (kUpperFirst) {
result.upper = advance(upper);
result.lower = advance(lower);
} else {
result.lower = advance(lower);
result.upper = advance(upper);
}
return result;
}
MutableCompressedList allocList() const {
uint8_t* buf = nullptr;
// WARNING: Current read/write logic assumes that the 7 bytes
// following the upper bytes and the 8 bytes following the lower bytes
// sequences are readable (stored value doesn't matter and won't be
// changed), so we allocate additional 8 bytes, but do not include them in
// size of returned value.
if (size > 0) {
buf = static_cast<uint8_t*>(malloc(bytes() + 8));
}
folly::MutableByteRange bufRange(buf, bytes());
return openList(bufRange);
}
size_t size = 0;
uint8_t numLowerBits = 0;
// Sizes in bytes.
size_t lower = 0;
size_t upper = 0;
size_t skipPointers = 0;
size_t forwardPointers = 0;
};
namespace detail {
template <class Encoder, class Instructions, class SizeType>
class UpperBitsReader : ForwardPointers<Encoder::forwardQuantum>,
SkipPointers<Encoder::skipQuantum> {
typedef typename Encoder::SkipValueType SkipValueType;
public:
typedef typename Encoder::ValueType ValueType;
explicit UpperBitsReader(const typename Encoder::CompressedList& list)
: ForwardPointers<Encoder::forwardQuantum>(list.forwardPointers),
SkipPointers<Encoder::skipQuantum>(list.skipPointers),
start_(list.upper) {
reset();
}
void reset() {
// Pretend the bitvector is prefixed by a block of zeroes.
block_ = 0;
position_ = static_cast<SizeType>(-1);
outer_ = static_cast<OuterType>(-sizeof(block_t));
value_ = 0;
}
SizeType position() const {
return position_;
}
ValueType value() const {
return value_;
}
ValueType previous() {
size_t inner;
block_t block;
getPreviousInfo(block, inner, outer_);
block_ = folly::loadUnaligned<block_t>(start_ + outer_);
block_ ^= block;
--position_;
return setValue(inner);
}
ValueType next() {
// Skip to the first non-zero block.
while (block_ == 0) {
outer_ += sizeof(block_t);
block_ = folly::loadUnaligned<block_t>(start_ + outer_);
}
++position_;
size_t inner = Instructions::ctz(block_);
block_ = Instructions::blsr(block_);
return setValue(inner);
}
ValueType skip(SizeType n) {
DCHECK_GT(n, 0);
position_ += n; // n 1-bits will be read.
// Use forward pointer.
if (Encoder::forwardQuantum > 0 && n > Encoder::forwardQuantum) {
const size_t steps = position_ / Encoder::forwardQuantum;
const size_t dest = folly::loadUnaligned<SkipValueType>(
this->forwardPointers_ + (steps - 1) * sizeof(SkipValueType));
reposition(dest + steps * Encoder::forwardQuantum);
n = position_ + 1 - steps * Encoder::forwardQuantum; // n is > 0.
}
size_t cnt;
// Find necessary block.
while ((cnt = Instructions::popcount(block_)) < n) {
n -= cnt;
outer_ += sizeof(block_t);
block_ = folly::loadUnaligned<block_t>(start_ + outer_);
}
// Skip to the n-th one in the block.
DCHECK_GT(n, 0);
size_t inner = select64<Instructions>(block_, n - 1);
block_ &= (block_t(-1) << inner) << 1;
return setValue(inner);
}
// Skip to the first element that is >= v and located *after* the current
// one (so even if current value equals v, position will be increased by 1).
ValueType skipToNext(ValueType v) {
DCHECK_GE(v, value_);
// Use skip pointer.
if (Encoder::skipQuantum > 0 && v >= value_ + Encoder::skipQuantum) {
const size_t steps = v / Encoder::skipQuantum;
const size_t dest = folly::loadUnaligned<SkipValueType>(
this->skipPointers_ + (steps - 1) * sizeof(SkipValueType));
reposition(dest + Encoder::skipQuantum * steps);
position_ = dest - 1;
// Correct value_ will be set during the next() call at the end.
// NOTE: Corresponding block of lower bits sequence may be
// prefetched here (via __builtin_prefetch), but experiments
// didn't show any significant improvements.
}
// Skip by blocks.
size_t cnt;
size_t skip = v - (8 * outer_ - position_ - 1);
constexpr size_t kBitsPerBlock = 8 * sizeof(block_t);
while ((cnt = Instructions::popcount(~block_)) < skip) {
skip -= cnt;
position_ += kBitsPerBlock - cnt;
outer_ += sizeof(block_t);
block_ = folly::loadUnaligned<block_t>(start_ + outer_);
}
if (LIKELY(skip)) {
auto inner = select64<Instructions>(~block_, skip - 1);
position_ += inner - skip + 1;
block_ &= block_t(-1) << inner;
}
next();
return value_;
}
/**
* Prepare to skip to `value`. This is a constant-time operation that will
* prefetch memory required for a `skipTo(value)` call.
*
* @return position of reader
*/
SizeType prepareSkipTo(ValueType v) const {
auto position = position_;
if (Encoder::skipQuantum > 0 && v >= value_ + Encoder::skipQuantum) {
auto outer = outer_;
const size_t steps = v / Encoder::skipQuantum;
const size_t dest = folly::loadUnaligned<SkipValueType>(
this->skipPointers_ + (steps - 1) * sizeof(SkipValueType));
position = dest - 1;
outer = (dest + Encoder::skipQuantum * steps) / 8;
// Prefetch up to the beginning of where we linear search. After that,
// hardware prefetching will outperform our own. In addition, this
// simplifies calculating what to prefetch as we don't have to calculate
// the entire destination address. Two cache lines are prefetched because
// this results in fewer cycles used (based on practical results) than
// one. However, three cache lines does not have any additional effect.
const auto addr = start_ + outer;
__builtin_prefetch(addr);
__builtin_prefetch(addr + kCacheLineSize);
}
return position;
}
ValueType previousValue() const {
block_t block;
size_t inner;
OuterType outer;
getPreviousInfo(block, inner, outer);
return static_cast<ValueType>(8 * outer + inner - (position_ - 1));
}
// Returns true if we're at the beginning of the list, or previousValue() !=
// value().
bool isAtBeginningOfRun() const {
DCHECK_NE(position(), static_cast<SizeType>(-1));
if (position_ == 0) {
return true;
}
size_t bitPos = size_t(value_) + position_ - 1;
return (start_[bitPos / 8] & (1 << (bitPos % 8))) == 0;
}
void setDone(SizeType endPos) {
position_ = endPos;
}
private:
ValueType setValue(size_t inner) {
value_ = static_cast<ValueType>(8 * outer_ + inner - position_);
return value_;
}
void reposition(SizeType dest) {
outer_ = dest / 8;
block_ = folly::loadUnaligned<block_t>(start_ + outer_);
block_ &= ~((block_t(1) << (dest % 8)) - 1);
}
using block_t = uint64_t;
// The size in bytes of the upper bits is limited by n + universe / 8,
// so a type that can hold either sizes or values is sufficient.
using OuterType = typename std::common_type<ValueType, SizeType>::type;
void getPreviousInfo(block_t& block, size_t& inner, OuterType& outer) const {
DCHECK_NE(position(), std::numeric_limits<SizeType>::max());
DCHECK_GT(position(), 0);
outer = outer_;
block = folly::loadUnaligned<block_t>(start_ + outer);
inner = size_t(value_) - 8 * outer_ + position_;
block &= (block_t(1) << inner) - 1;
while (UNLIKELY(block == 0)) {
DCHECK_GT(outer, 0);
outer -= std::min<OuterType>(sizeof(block_t), outer);
block = folly::loadUnaligned<block_t>(start_ + outer);
}
inner = 8 * sizeof(block_t) - 1 - Instructions::clz(block);
}
const unsigned char* const start_;
block_t block_;
SizeType position_; // Index of current value (= #reads - 1).
OuterType outer_; // Outer offset: number of consumed bytes in upper.
ValueType value_;
};
} // namespace detail
// If kUnchecked = true the caller must guarantee that all the operations return
// valid elements, i.e., they would never return false if checked.
//
// If the list length is known to be representable with a type narrower than the
// SkipValueType used in the format, the reader footprint can be reduced by
// passing the type as SizeType.
template <
class Encoder,
class Instructions = instructions::Default,
bool kUnchecked = false,
class SizeType = typename Encoder::SkipValueType>
class EliasFanoReader {
public:
typedef Encoder EncoderType;
typedef typename Encoder::ValueType ValueType;
explicit EliasFanoReader(const typename Encoder::CompressedList& list)
: upper_(list),
lower_(list.lower),
size_(list.size),
numLowerBits_(list.numLowerBits) {
DCHECK(Instructions::supported());
// To avoid extra branching during skipTo() while reading
// upper sequence we need to know the last element.
// If kUnchecked == true, we do not check that skipTo() is called
// within the bounds, so we can avoid initializing lastValue_.
if (kUnchecked || UNLIKELY(list.size == 0)) {
lastValue_ = 0;
return;
}
ValueType lastUpperValue = ValueType(8 * list.upperSizeBytes - size_);
auto it = list.upper + list.upperSizeBytes - 1;
DCHECK_NE(*it, 0);
lastUpperValue -= 8 - folly::findLastSet(*it);
lastValue_ = readLowerPart(size_ - 1) | (lastUpperValue << numLowerBits_);
}
void reset() {
upper_.reset();
value_ = kInvalidValue;
}
bool previous() {
if (!kUnchecked && UNLIKELY(position() == 0)) {
reset();
return false;
}
upper_.previous();
value_ =
readLowerPart(upper_.position()) | (upper_.value() << numLowerBits_);
return true;
}
bool next() {
if (!kUnchecked && UNLIKELY(position() + 1 >= size_)) {
return setDone();
}
upper_.next();
value_ =
readLowerPart(upper_.position()) | (upper_.value() << numLowerBits_);
return true;
}
/**
* Advances by n elements. n = 0 is allowed and has no effect. Returns false
* if the end of the list is reached.
*/
bool skip(SizeType n) {
if (n == 0) {
return valid();
}
if (kUnchecked || LIKELY(position() + n < size_)) {
if (LIKELY(n < kLinearScanThreshold)) {
for (SizeType i = 0; i < n; ++i) {
upper_.next();
}
} else {
upper_.skip(n);
}
value_ =
readLowerPart(upper_.position()) | (upper_.value() << numLowerBits_);
return true;
}
return setDone();
}
/**
* Skips to the first element >= value whose position is greater or equal to
* the current position. Requires that value >= value() (or that the reader is
* at position -1). Returns false if no such element exists.
*/
bool skipTo(ValueType value) {
if (value != kInvalidValue) {
DCHECK_GE(value + 1, value_ + 1);
}
if (!kUnchecked && value > lastValue_) {
return setDone();
} else if (value == value_) {
return true;
}
ValueType upperValue = (value >> numLowerBits_);
ValueType upperSkip = upperValue - upper_.value();
// The average density of ones in upper bits is 1/2.
// LIKELY here seems to make things worse, even for small skips.
if (upperSkip < 2 * kLinearScanThreshold) {
do {
upper_.next();
} while (UNLIKELY(upper_.value() < upperValue));
} else {
upper_.skipToNext(upperValue);
}
iterateTo(value);
return true;
}
/**
* Prepare to skip to `value` by prefetching appropriate memory in both the
* upper and lower bits.
*/
void prepareSkipTo(ValueType value) const {
// Also works when value_ == kInvalidValue.
if (value != kInvalidValue) {
DCHECK_GE(value + 1, value_ + 1);
}
if ((!kUnchecked && value > lastValue_) || (value == value_)) {
return;
}
// Do minimal computation required to prefetch address used in
// `readLowerPart()`.
ValueType upperValue = (value >> numLowerBits_);
const auto upperPosition = upper_.prepareSkipTo(upperValue);
const auto addr = lower_ + (upperPosition * numLowerBits_ / 8);
__builtin_prefetch(addr);
__builtin_prefetch(addr + kCacheLineSize);
}
/**
* Jumps to the element at position n. The reader can be in any state. Returns
* false if n >= size().
*/
bool jump(SizeType n) {
if (n + 1 < upper_.position() + 1) { // Also works if position() == -1.
reset();
n += 1; // Initial position is -1.
} else {
n -= upper_.position();
}
return skip(n);
}
/**
* Jumps to the first element >= value. The reader can be in any
* state. Returns false if no such element exists.
*
* If all the values in the list can be assumed distinct, setting
* assumeDistinct = true can enable some optimizations.
*/
bool jumpTo(ValueType value, bool assumeDistinct = false) {
if (value == value_) {
if (assumeDistinct == true) {
return true;
}
// We might be in the middle of a run, iterate backwards to the beginning.
auto valueLower = Instructions::bzhi(value_, numLowerBits_);
while (!upper_.isAtBeginningOfRun() &&
readLowerPart(upper_.position() - 1) == valueLower) {
upper_.previous();
}
return true;
}
// We need to reset if we're not in the initial state and the jump is
// backwards.
if (position() != static_cast<SizeType>(-1) &&
value < value_) { // If position() == size() value_ is kInvalidValue.
reset();
}
return skipTo(value);
}
ValueType lastValue() const {
CHECK(!kUnchecked);
return lastValue_;
}
ValueType previousValue() const {
DCHECK_GT(position(), 0);
DCHECK_LT(position(), size());
return readLowerPart(upper_.position() - 1) |
(upper_.previousValue() << numLowerBits_);
}
SizeType size() const {
return size_;
}
bool valid() const {
return position() < size(); // Also checks that position() != -1.
}
SizeType position() const {
return upper_.position();
}
ValueType value() const {
DCHECK(valid());
return value_;
}
private:
// Must hold kInvalidValue + 1 == 0.
constexpr static ValueType kInvalidValue = -1;
bool setDone() {
value_ = kInvalidValue;
upper_.setDone(size_);
return false;
}
ValueType readLowerPart(SizeType i) const {
DCHECK_LT(i, size_);
const size_t pos = i * numLowerBits_;
const unsigned char* ptr = lower_ + (pos / 8);
const uint64_t ptrv = folly::loadUnaligned<uint64_t>(ptr);
// This removes the branch in the fallback implementation of
// bzhi. The condition is verified at encoding time.
assume(numLowerBits_ < sizeof(ValueType) * 8);
return Instructions::bzhi(ptrv >> (pos % 8), numLowerBits_);
}
void iterateTo(ValueType value) {
while (true) {
value_ =
readLowerPart(upper_.position()) | (upper_.value() << numLowerBits_);
if (LIKELY(value_ >= value)) {
break;
}
upper_.next();
}
}
constexpr static size_t kLinearScanThreshold = 8;
detail::UpperBitsReader<Encoder, Instructions, SizeType> upper_;
const uint8_t* lower_;
SizeType size_;
ValueType value_ = kInvalidValue;
ValueType lastValue_;
uint8_t numLowerBits_;
};
} // namespace compression
} // namespace folly