Rocket.Chat.ReactNative/ios/Pods/Folly/folly/container/detail/F14Policy.h

1488 lines
43 KiB
C++

/*
* Copyright 2017-present Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <memory>
#include <type_traits>
#include <utility>
#include <folly/Memory.h>
#include <folly/Portability.h>
#include <folly/Unit.h>
#include <folly/container/detail/F14Table.h>
#include <folly/hash/Hash.h>
#include <folly/lang/Align.h>
#include <folly/lang/SafeAssert.h>
#include <folly/memory/Malloc.h>
#if FOLLY_F14_VECTOR_INTRINSICS_AVAILABLE
namespace folly {
namespace f14 {
namespace detail {
template <typename Ptr>
using NonConstPtr = typename std::pointer_traits<Ptr>::template rebind<
std::remove_const_t<typename std::pointer_traits<Ptr>::element_type>>;
template <typename KeyType, typename MappedType>
using MapValueType = std::pair<KeyType const, MappedType>;
template <typename KeyType, typename MappedTypeOrVoid>
using SetOrMapValueType = std::conditional_t<
std::is_same<MappedTypeOrVoid, void>::value,
KeyType,
MapValueType<KeyType, MappedTypeOrVoid>>;
// Used to enable EBO for Hasher, KeyEqual, and Alloc. std::tuple of
// all empty objects is empty in libstdc++ but not libc++.
template <
char Tag,
typename T,
bool Inherit = std::is_empty<T>::value && !std::is_final<T>::value>
struct ObjectHolder {
T value_;
template <typename... Args>
ObjectHolder(Args&&... args) : value_{std::forward<Args>(args)...} {}
T& operator*() {
return value_;
}
T const& operator*() const {
return value_;
}
};
template <char Tag, typename T>
struct ObjectHolder<Tag, T, true> : private T {
template <typename... Args>
ObjectHolder(Args&&... args) : T{std::forward<Args>(args)...} {}
T& operator*() {
return *this;
}
T const& operator*() const {
return *this;
}
};
// Policy provides the functionality of hasher, key_equal, and
// allocator_type. In addition, it can add indirection to the values
// contained in the base table by defining a non-trivial value() method.
//
// To facilitate stateful implementations it is guaranteed that there
// will be a 1:1 relationship between BaseTable and Policy instance:
// policies will only be copied when their owning table is copied, and
// they will only be moved when their owning table is moved.
//
// Key equality will have the user-supplied search key as its first
// argument and the table contents as its second. Heterogeneous lookup
// should be handled on the first argument.
//
// Item is the data stored inline in the hash table's chunks. The policy
// controls how this is mapped to the corresponding Value.
//
// The policies defined in this file work for either set or map types.
// Most of the functionality is identical. A few methods detect the
// collection type by checking to see if MappedType is void, and then use
// SFINAE to select the appropriate implementation.
template <
typename KeyType,
typename MappedTypeOrVoid,
typename HasherOrVoid,
typename KeyEqualOrVoid,
typename AllocOrVoid,
typename ItemType>
struct BasePolicy
: private ObjectHolder<
'H',
Defaulted<HasherOrVoid, DefaultHasher<KeyType>>>,
private ObjectHolder<
'E',
Defaulted<KeyEqualOrVoid, DefaultKeyEqual<KeyType>>>,
private ObjectHolder<
'A',
Defaulted<
AllocOrVoid,
DefaultAlloc<SetOrMapValueType<KeyType, MappedTypeOrVoid>>>> {
//////// user-supplied types
using Key = KeyType;
using Mapped = MappedTypeOrVoid;
using Value = SetOrMapValueType<Key, Mapped>;
using Item = ItemType;
using Hasher = Defaulted<HasherOrVoid, DefaultHasher<Key>>;
using KeyEqual = Defaulted<KeyEqualOrVoid, DefaultKeyEqual<Key>>;
using Alloc = Defaulted<AllocOrVoid, DefaultAlloc<Value>>;
using AllocTraits = std::allocator_traits<Alloc>;
using ByteAlloc = typename AllocTraits::template rebind_alloc<uint8_t>;
using ByteAllocTraits = typename std::allocator_traits<ByteAlloc>;
using BytePtr = typename ByteAllocTraits::pointer;
//////// info about user-supplied types
static_assert(
std::is_same<typename AllocTraits::value_type, Value>::value,
"wrong allocator value_type");
private:
using HasherHolder = ObjectHolder<'H', Hasher>;
using KeyEqualHolder = ObjectHolder<'E', KeyEqual>;
using AllocHolder = ObjectHolder<'A', Alloc>;
// emulate c++17's std::allocator_traits<A>::is_always_equal
template <typename A, typename = void>
struct AllocIsAlwaysEqual : std::is_empty<A> {};
template <typename A>
struct AllocIsAlwaysEqual<A, typename A::is_always_equal>
: A::is_always_equal {};
// emulate c++17 has std::is_nothrow_swappable
template <typename T>
static constexpr bool isNothrowSwap() {
using std::swap;
return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
}
public:
static constexpr bool kAllocIsAlwaysEqual = AllocIsAlwaysEqual<Alloc>::value;
static constexpr bool kDefaultConstructIsNoexcept =
std::is_nothrow_default_constructible<Hasher>::value &&
std::is_nothrow_default_constructible<KeyEqual>::value &&
std::is_nothrow_default_constructible<Alloc>::value;
static constexpr bool kSwapIsNoexcept = kAllocIsAlwaysEqual &&
isNothrowSwap<Hasher>() && isNothrowSwap<KeyEqual>();
static constexpr bool isAvalanchingHasher() {
return IsAvalanchingHasher<Hasher, Key>::value;
}
//////// internal types and constants
using InternalSizeType = std::size_t;
// if false, F14Table will be smaller but F14Table::begin() won't work
static constexpr bool kEnableItemIteration = true;
using Chunk = F14Chunk<Item>;
using ChunkPtr = typename std::pointer_traits<
typename AllocTraits::pointer>::template rebind<Chunk>;
using ItemIter = F14ItemIter<ChunkPtr>;
static constexpr bool kIsMap = !std::is_same<Key, Value>::value;
static_assert(
kIsMap == !std::is_void<MappedTypeOrVoid>::value,
"Assumption for the kIsMap check violated.");
using MappedOrBool = std::conditional_t<kIsMap, Mapped, bool>;
//////// methods
BasePolicy(Hasher const& hasher, KeyEqual const& keyEqual, Alloc const& alloc)
: HasherHolder{hasher}, KeyEqualHolder{keyEqual}, AllocHolder{alloc} {}
BasePolicy(BasePolicy const& rhs)
: HasherHolder{rhs.hasher()},
KeyEqualHolder{rhs.keyEqual()},
AllocHolder{
AllocTraits::select_on_container_copy_construction(rhs.alloc())} {}
BasePolicy(BasePolicy const& rhs, Alloc const& alloc)
: HasherHolder{rhs.hasher()},
KeyEqualHolder{rhs.keyEqual()},
AllocHolder{alloc} {}
BasePolicy(BasePolicy&& rhs) noexcept
: HasherHolder{std::move(rhs.hasher())},
KeyEqualHolder{std::move(rhs.keyEqual())},
AllocHolder{std::move(rhs.alloc())} {}
BasePolicy(BasePolicy&& rhs, Alloc const& alloc) noexcept
: HasherHolder{std::move(rhs.hasher())},
KeyEqualHolder{std::move(rhs.keyEqual())},
AllocHolder{alloc} {}
BasePolicy& operator=(BasePolicy const& rhs) {
hasher() = rhs.hasher();
keyEqual() = rhs.keyEqual();
if (AllocTraits::propagate_on_container_copy_assignment::value) {
alloc() = rhs.alloc();
}
return *this;
}
BasePolicy& operator=(BasePolicy&& rhs) noexcept {
hasher() = std::move(rhs.hasher());
keyEqual() = std::move(rhs.keyEqual());
if (AllocTraits::propagate_on_container_move_assignment::value) {
alloc() = std::move(rhs.alloc());
}
return *this;
}
void swapBasePolicy(BasePolicy& rhs) {
using std::swap;
swap(hasher(), rhs.hasher());
swap(keyEqual(), rhs.keyEqual());
if (AllocTraits::propagate_on_container_swap::value) {
swap(alloc(), rhs.alloc());
}
}
Hasher& hasher() {
return *static_cast<HasherHolder&>(*this);
}
Hasher const& hasher() const {
return *static_cast<HasherHolder const&>(*this);
}
KeyEqual& keyEqual() {
return *static_cast<KeyEqualHolder&>(*this);
}
KeyEqual const& keyEqual() const {
return *static_cast<KeyEqualHolder const&>(*this);
}
Alloc& alloc() {
return *static_cast<AllocHolder&>(*this);
}
Alloc const& alloc() const {
return *static_cast<AllocHolder const&>(*this);
}
template <typename K>
std::size_t computeKeyHash(K const& key) const {
static_assert(
isAvalanchingHasher() == IsAvalanchingHasher<Hasher, K>::value, "");
static_assert(
!isAvalanchingHasher() ||
sizeof(decltype(hasher()(key))) >= sizeof(std::size_t),
"hasher is not avalanching if it doesn't return enough bits");
return hasher()(key);
}
Key const& keyForValue(Key const& v) const {
return v;
}
Key const& keyForValue(std::pair<Key const, MappedOrBool> const& p) const {
return p.first;
}
Key const& keyForValue(std::pair<Key&&, MappedOrBool&&> const& p) const {
return p.first;
}
// map's choice of pair<K const, T> as value_type is unfortunate,
// because it means we either need a proxy iterator, a pointless key
// copy when moving items during rehash, or some sort of UB hack.
//
// This code implements the hack. Use moveValue(v) instead of
// std::move(v) as the source of a move construction. enable_if_t is
// used so that this works for maps while being a no-op for sets.
template <typename Dummy = int>
static std::pair<Key&&, MappedOrBool&&> moveValue(
std::pair<Key const, MappedOrBool>& value,
std::enable_if_t<kIsMap, Dummy> = 0) {
return {std::move(const_cast<Key&>(value.first)), std::move(value.second)};
}
template <typename Dummy = int>
static Value&& moveValue(Value& value, std::enable_if_t<!kIsMap, Dummy> = 0) {
return std::move(value);
}
template <typename P>
bool
beforeBuild(std::size_t /*size*/, std::size_t /*capacity*/, P&& /*rhs*/) {
return false;
}
template <typename P>
void afterBuild(
bool /*undoState*/,
bool /*success*/,
std::size_t /*size*/,
std::size_t /*capacity*/,
P&& /*rhs*/) {}
std::size_t alignedAllocSize(std::size_t n) const {
if (kRequiredVectorAlignment <= alignof(max_align_t) ||
std::is_same<ByteAlloc, std::allocator<uint8_t>>::value) {
return n;
} else {
return n + kRequiredVectorAlignment;
}
}
bool beforeRehash(
std::size_t /*size*/,
std::size_t /*oldCapacity*/,
std::size_t /*newCapacity*/,
std::size_t chunkAllocSize,
BytePtr& outChunkAllocation) {
outChunkAllocation =
allocateOverAligned<ByteAlloc, kRequiredVectorAlignment>(
ByteAlloc{alloc()}, chunkAllocSize);
return false;
}
void afterRehash(
bool /*undoState*/,
bool /*success*/,
std::size_t /*size*/,
std::size_t /*oldCapacity*/,
std::size_t /*newCapacity*/,
BytePtr chunkAllocation,
std::size_t chunkAllocSize) {
// on success, this will be the old allocation, on failure the new one
if (chunkAllocation != nullptr) {
deallocateOverAligned<ByteAlloc, kRequiredVectorAlignment>(
ByteAlloc{alloc()}, chunkAllocation, chunkAllocSize);
}
}
void beforeClear(std::size_t /*size*/, std::size_t /*capacity*/) {}
void afterClear(std::size_t /*size*/, std::size_t /*capacity*/) {}
void beforeReset(std::size_t /*size*/, std::size_t /*capacity*/) {}
void afterReset(
std::size_t /*size*/,
std::size_t /*capacity*/,
BytePtr chunkAllocation,
std::size_t chunkAllocSize) {
deallocateOverAligned<ByteAlloc, kRequiredVectorAlignment>(
ByteAlloc{alloc()}, chunkAllocation, chunkAllocSize);
}
void prefetchValue(Item const&) const {
// Subclass should disable with prefetchBeforeRehash(),
// prefetchBeforeCopy(), and prefetchBeforeDestroy(). if they don't
// override this method, because neither gcc nor clang can figure
// out that DenseMaskIter with an empty body can be elided.
FOLLY_SAFE_DCHECK(false, "should be disabled");
}
void afterDestroyWithoutDeallocate(Value* addr, std::size_t n) {
if (kIsSanitizeAddress) {
memset(static_cast<void*>(addr), 0x66, sizeof(Value) * n);
}
}
};
// BaseIter is a convenience for concrete set and map implementations
template <typename ValuePtr, typename Item>
class BaseIter : public std::iterator<
std::forward_iterator_tag,
std::remove_const_t<
typename std::pointer_traits<ValuePtr>::element_type>,
std::ptrdiff_t,
ValuePtr,
decltype(*std::declval<ValuePtr>())> {
protected:
using Chunk = F14Chunk<Item>;
using ChunkPtr =
typename std::pointer_traits<ValuePtr>::template rebind<Chunk>;
using ItemIter = F14ItemIter<ChunkPtr>;
using ValueConstPtr = typename std::pointer_traits<ValuePtr>::template rebind<
std::add_const_t<typename std::pointer_traits<ValuePtr>::element_type>>;
};
//////// ValueContainer
template <
typename Key,
typename Mapped,
typename HasherOrVoid,
typename KeyEqualOrVoid,
typename AllocOrVoid>
class ValueContainerPolicy;
template <typename ValuePtr>
using ValueContainerIteratorBase = BaseIter<
ValuePtr,
std::remove_const_t<typename std::pointer_traits<ValuePtr>::element_type>>;
template <typename ValuePtr>
class ValueContainerIterator : public ValueContainerIteratorBase<ValuePtr> {
using Super = ValueContainerIteratorBase<ValuePtr>;
using ItemIter = typename Super::ItemIter;
using ValueConstPtr = typename Super::ValueConstPtr;
public:
using pointer = typename Super::pointer;
using reference = typename Super::reference;
using value_type = typename Super::value_type;
ValueContainerIterator() = default;
ValueContainerIterator(ValueContainerIterator const&) = default;
ValueContainerIterator(ValueContainerIterator&&) = default;
ValueContainerIterator& operator=(ValueContainerIterator const&) = default;
ValueContainerIterator& operator=(ValueContainerIterator&&) = default;
~ValueContainerIterator() = default;
/*implicit*/ operator ValueContainerIterator<ValueConstPtr>() const {
return ValueContainerIterator<ValueConstPtr>{underlying_};
}
reference operator*() const {
return underlying_.item();
}
pointer operator->() const {
return std::pointer_traits<pointer>::pointer_to(**this);
}
ValueContainerIterator& operator++() {
underlying_.advance();
return *this;
}
ValueContainerIterator operator++(int) {
auto cur = *this;
++*this;
return cur;
}
bool operator==(ValueContainerIterator<ValueConstPtr> const& rhs) const {
return underlying_ == rhs.underlying_;
}
bool operator!=(ValueContainerIterator<ValueConstPtr> const& rhs) const {
return !(*this == rhs);
}
private:
ItemIter underlying_;
explicit ValueContainerIterator(ItemIter const& underlying)
: underlying_{underlying} {}
template <typename K, typename M, typename H, typename E, typename A>
friend class ValueContainerPolicy;
template <typename P>
friend class ValueContainerIterator;
};
template <
typename Key,
typename MappedTypeOrVoid,
typename HasherOrVoid,
typename KeyEqualOrVoid,
typename AllocOrVoid>
class ValueContainerPolicy : public BasePolicy<
Key,
MappedTypeOrVoid,
HasherOrVoid,
KeyEqualOrVoid,
AllocOrVoid,
SetOrMapValueType<Key, MappedTypeOrVoid>> {
public:
using Super = BasePolicy<
Key,
MappedTypeOrVoid,
HasherOrVoid,
KeyEqualOrVoid,
AllocOrVoid,
SetOrMapValueType<Key, MappedTypeOrVoid>>;
using Alloc = typename Super::Alloc;
using AllocTraits = typename Super::AllocTraits;
using Item = typename Super::Item;
using ItemIter = typename Super::ItemIter;
using Value = typename Super::Value;
private:
using ByteAlloc = typename Super::ByteAlloc;
using Super::kIsMap;
public:
using ConstIter = ValueContainerIterator<typename AllocTraits::const_pointer>;
using Iter = std::conditional_t<
kIsMap,
ValueContainerIterator<typename AllocTraits::pointer>,
ConstIter>;
//////// F14Table policy
static constexpr bool prefetchBeforeRehash() {
return false;
}
static constexpr bool prefetchBeforeCopy() {
return false;
}
static constexpr bool prefetchBeforeDestroy() {
return false;
}
static constexpr bool destroyItemOnClear() {
return !std::is_trivially_destructible<Item>::value ||
!AllocatorHasDefaultObjectDestroy<Alloc, Item>::value;
}
// inherit constructors
using Super::Super;
void swapPolicy(ValueContainerPolicy& rhs) {
this->swapBasePolicy(rhs);
}
using Super::keyForValue;
static_assert(
std::is_same<Item, Value>::value,
"Item and Value should be the same type for ValueContainerPolicy.");
std::size_t computeItemHash(Item const& item) const {
return this->computeKeyHash(keyForValue(item));
}
template <typename K>
bool keyMatchesItem(K const& key, Item const& item) const {
return this->keyEqual()(key, keyForValue(item));
}
Value const& buildArgForItem(Item const& item) const& {
return item;
}
// buildArgForItem(Item&)&& is used when moving between unequal allocators
decltype(auto) buildArgForItem(Item& item) && {
return Super::moveValue(item);
}
Value&& valueAtItemForExtract(Item& item) {
return std::move(item);
}
template <typename... Args>
void
constructValueAtItem(std::size_t /*size*/, Item* itemAddr, Args&&... args) {
Alloc& a = this->alloc();
// GCC < 6 doesn't use the fact that itemAddr came from a reference
// to avoid a null-check in the placement new. folly::assume-ing it
// here gets rid of that branch. The branch is very predictable,
// but spoils some further optimizations. All clang versions that
// compile folly seem to be okay.
//
// TODO(T31574848): clean up assume-s used to optimize placement new
assume(itemAddr != nullptr);
AllocTraits::construct(a, itemAddr, std::forward<Args>(args)...);
}
template <typename T>
std::enable_if_t<std::is_nothrow_move_constructible<T>::value>
complainUnlessNothrowMove() {}
template <typename T>
[[deprecated(
"use F14NodeMap/Set or mark key and mapped type move constructor nothrow")]] std::
enable_if_t<!std::is_nothrow_move_constructible<T>::value>
complainUnlessNothrowMove() {}
void moveItemDuringRehash(Item* itemAddr, Item& src) {
complainUnlessNothrowMove<Key>();
complainUnlessNothrowMove<lift_unit_t<MappedTypeOrVoid>>();
constructValueAtItem(0, itemAddr, Super::moveValue(src));
if (destroyItemOnClear()) {
if (kIsMap) {
// Laundering in the standard is only described as a solution
// for changes to const fields due to the creation of a new
// object lifetime (destroy and then placement new in the same
// location), but it seems highly likely that it will also cause
// the compiler to drop such assumptions that are violated due
// to our UB const_cast in moveValue.
destroyItem(*launder(std::addressof(src)));
} else {
destroyItem(src);
}
}
}
void destroyItem(Item& item) {
Alloc& a = this->alloc();
auto ptr = std::addressof(item);
AllocTraits::destroy(a, ptr);
this->afterDestroyWithoutDeallocate(ptr, 1);
}
template <typename V>
void visitPolicyAllocationClasses(
std::size_t chunkAllocSize,
std::size_t /*size*/,
std::size_t /*capacity*/,
V&& visitor) const {
if (chunkAllocSize > 0) {
visitor(
allocationBytesForOverAligned<ByteAlloc, kRequiredVectorAlignment>(
chunkAllocSize),
1);
}
}
//////// F14BasicMap/Set policy
Iter makeIter(ItemIter const& underlying) const {
return Iter{underlying};
}
ConstIter makeConstIter(ItemIter const& underlying) const {
return ConstIter{underlying};
}
ItemIter const& unwrapIter(ConstIter const& iter) const {
return iter.underlying_;
}
};
//////// NodeContainer
template <
typename Key,
typename Mapped,
typename HasherOrVoid,
typename KeyEqualOrVoid,
typename AllocOrVoid>
class NodeContainerPolicy;
template <typename ValuePtr>
class NodeContainerIterator : public BaseIter<ValuePtr, NonConstPtr<ValuePtr>> {
using Super = BaseIter<ValuePtr, NonConstPtr<ValuePtr>>;
using ItemIter = typename Super::ItemIter;
using ValueConstPtr = typename Super::ValueConstPtr;
public:
using pointer = typename Super::pointer;
using reference = typename Super::reference;
using value_type = typename Super::value_type;
NodeContainerIterator() = default;
NodeContainerIterator(NodeContainerIterator const&) = default;
NodeContainerIterator(NodeContainerIterator&&) = default;
NodeContainerIterator& operator=(NodeContainerIterator const&) = default;
NodeContainerIterator& operator=(NodeContainerIterator&&) = default;
~NodeContainerIterator() = default;
/*implicit*/ operator NodeContainerIterator<ValueConstPtr>() const {
return NodeContainerIterator<ValueConstPtr>{underlying_};
}
reference operator*() const {
return *underlying_.item();
}
pointer operator->() const {
return std::pointer_traits<pointer>::pointer_to(**this);
}
NodeContainerIterator& operator++() {
underlying_.advance();
return *this;
}
NodeContainerIterator operator++(int) {
auto cur = *this;
++*this;
return cur;
}
bool operator==(NodeContainerIterator<ValueConstPtr> const& rhs) const {
return underlying_ == rhs.underlying_;
}
bool operator!=(NodeContainerIterator<ValueConstPtr> const& rhs) const {
return !(*this == rhs);
}
private:
ItemIter underlying_;
explicit NodeContainerIterator(ItemIter const& underlying)
: underlying_{underlying} {}
template <typename K, typename M, typename H, typename E, typename A>
friend class NodeContainerPolicy;
template <typename P>
friend class NodeContainerIterator;
};
template <
typename Key,
typename MappedTypeOrVoid,
typename HasherOrVoid,
typename KeyEqualOrVoid,
typename AllocOrVoid>
class NodeContainerPolicy
: public BasePolicy<
Key,
MappedTypeOrVoid,
HasherOrVoid,
KeyEqualOrVoid,
AllocOrVoid,
typename std::allocator_traits<Defaulted<
AllocOrVoid,
DefaultAlloc<std::conditional_t<
std::is_void<MappedTypeOrVoid>::value,
Key,
MapValueType<Key, MappedTypeOrVoid>>>>>::pointer> {
public:
using Super = BasePolicy<
Key,
MappedTypeOrVoid,
HasherOrVoid,
KeyEqualOrVoid,
AllocOrVoid,
typename std::allocator_traits<Defaulted<
AllocOrVoid,
DefaultAlloc<std::conditional_t<
std::is_void<MappedTypeOrVoid>::value,
Key,
MapValueType<Key, MappedTypeOrVoid>>>>>::pointer>;
using Alloc = typename Super::Alloc;
using AllocTraits = typename Super::AllocTraits;
using Item = typename Super::Item;
using ItemIter = typename Super::ItemIter;
using Value = typename Super::Value;
private:
using ByteAlloc = typename Super::ByteAlloc;
using Super::kIsMap;
public:
using ConstIter = NodeContainerIterator<typename AllocTraits::const_pointer>;
using Iter = std::conditional_t<
kIsMap,
NodeContainerIterator<typename AllocTraits::pointer>,
ConstIter>;
//////// F14Table policy
static constexpr bool prefetchBeforeRehash() {
return true;
}
static constexpr bool prefetchBeforeCopy() {
return true;
}
static constexpr bool prefetchBeforeDestroy() {
return !std::is_trivially_destructible<Value>::value;
}
static constexpr bool destroyItemOnClear() {
return true;
}
// inherit constructors
using Super::Super;
void swapPolicy(NodeContainerPolicy& rhs) {
this->swapBasePolicy(rhs);
}
using Super::keyForValue;
std::size_t computeItemHash(Item const& item) const {
return this->computeKeyHash(keyForValue(*item));
}
template <typename K>
bool keyMatchesItem(K const& key, Item const& item) const {
return this->keyEqual()(key, keyForValue(*item));
}
Value const& buildArgForItem(Item const& item) const& {
return *item;
}
// buildArgForItem(Item&)&& is used when moving between unequal allocators
decltype(auto) buildArgForItem(Item& item) && {
return Super::moveValue(*item);
}
Value&& valueAtItemForExtract(Item& item) {
return std::move(*item);
}
template <typename... Args>
void
constructValueAtItem(std::size_t /*size*/, Item* itemAddr, Args&&... args) {
Alloc& a = this->alloc();
// TODO(T31574848): clean up assume-s used to optimize placement new
assume(itemAddr != nullptr);
new (itemAddr) Item{AllocTraits::allocate(a, 1)};
auto p = std::addressof(**itemAddr);
// TODO(T31574848): clean up assume-s used to optimize placement new
assume(p != nullptr);
AllocTraits::construct(a, p, std::forward<Args>(args)...);
}
void moveItemDuringRehash(Item* itemAddr, Item& src) {
// This is basically *itemAddr = src; src = nullptr, but allowing
// for fancy pointers.
// TODO(T31574848): clean up assume-s used to optimize placement new
assume(itemAddr != nullptr);
new (itemAddr) Item{std::move(src)};
src = nullptr;
src.~Item();
}
void prefetchValue(Item const& item) const {
prefetchAddr(std::addressof(*item));
}
void destroyItem(Item& item) {
if (item != nullptr) {
Alloc& a = this->alloc();
AllocTraits::destroy(a, std::addressof(*item));
AllocTraits::deallocate(a, item, 1);
}
item.~Item();
}
template <typename V>
void visitPolicyAllocationClasses(
std::size_t chunkAllocSize,
std::size_t size,
std::size_t /*capacity*/,
V&& visitor) const {
if (chunkAllocSize > 0) {
visitor(
allocationBytesForOverAligned<ByteAlloc, kRequiredVectorAlignment>(
chunkAllocSize),
1);
}
if (size > 0) {
visitor(sizeof(Value), size);
}
}
//////// F14BasicMap/Set policy
Iter makeIter(ItemIter const& underlying) const {
return Iter{underlying};
}
ConstIter makeConstIter(ItemIter const& underlying) const {
return Iter{underlying};
}
ItemIter const& unwrapIter(ConstIter const& iter) const {
return iter.underlying_;
}
};
//////// VectorContainer
template <
typename Key,
typename MappedTypeOrVoid,
typename HasherOrVoid,
typename KeyEqualOrVoid,
typename AllocOrVoid>
class VectorContainerPolicy;
template <typename ValuePtr>
class VectorContainerIterator : public BaseIter<ValuePtr, uint32_t> {
using Super = BaseIter<ValuePtr, uint32_t>;
using ValueConstPtr = typename Super::ValueConstPtr;
public:
using pointer = typename Super::pointer;
using reference = typename Super::reference;
using value_type = typename Super::value_type;
VectorContainerIterator() = default;
VectorContainerIterator(VectorContainerIterator const&) = default;
VectorContainerIterator(VectorContainerIterator&&) = default;
VectorContainerIterator& operator=(VectorContainerIterator const&) = default;
VectorContainerIterator& operator=(VectorContainerIterator&&) = default;
~VectorContainerIterator() = default;
/*implicit*/ operator VectorContainerIterator<ValueConstPtr>() const {
return VectorContainerIterator<ValueConstPtr>{current_, lowest_};
}
reference operator*() const {
return *current_;
}
pointer operator->() const {
return current_;
}
VectorContainerIterator& operator++() {
if (UNLIKELY(current_ == lowest_)) {
current_ = nullptr;
} else {
--current_;
}
return *this;
}
VectorContainerIterator operator++(int) {
auto cur = *this;
++*this;
return cur;
}
bool operator==(VectorContainerIterator<ValueConstPtr> const& rhs) const {
return current_ == rhs.current_;
}
bool operator!=(VectorContainerIterator<ValueConstPtr> const& rhs) const {
return !(*this == rhs);
}
private:
ValuePtr current_;
ValuePtr lowest_;
explicit VectorContainerIterator(ValuePtr current, ValuePtr lowest)
: current_(current), lowest_(lowest) {}
std::size_t index() const {
return current_ - lowest_;
}
template <typename K, typename M, typename H, typename E, typename A>
friend class VectorContainerPolicy;
template <typename P>
friend class VectorContainerIterator;
};
struct VectorContainerIndexSearch {
uint32_t index_;
};
template <
typename Key,
typename MappedTypeOrVoid,
typename HasherOrVoid,
typename KeyEqualOrVoid,
typename AllocOrVoid>
class VectorContainerPolicy : public BasePolicy<
Key,
MappedTypeOrVoid,
HasherOrVoid,
KeyEqualOrVoid,
AllocOrVoid,
uint32_t> {
public:
using Super = BasePolicy<
Key,
MappedTypeOrVoid,
HasherOrVoid,
KeyEqualOrVoid,
AllocOrVoid,
uint32_t>;
using Alloc = typename Super::Alloc;
using AllocTraits = typename Super::AllocTraits;
using ByteAlloc = typename Super::ByteAlloc;
using ByteAllocTraits = typename Super::ByteAllocTraits;
using BytePtr = typename Super::BytePtr;
using Hasher = typename Super::Hasher;
using Item = typename Super::Item;
using ItemIter = typename Super::ItemIter;
using KeyEqual = typename Super::KeyEqual;
using Value = typename Super::Value;
using Super::kAllocIsAlwaysEqual;
private:
using Super::kIsMap;
public:
static constexpr bool kEnableItemIteration = false;
using InternalSizeType = Item;
using ConstIter =
VectorContainerIterator<typename AllocTraits::const_pointer>;
using Iter = std::conditional_t<
kIsMap,
VectorContainerIterator<typename AllocTraits::pointer>,
ConstIter>;
using ConstReverseIter = typename AllocTraits::const_pointer;
using ReverseIter = std::
conditional_t<kIsMap, typename AllocTraits::pointer, ConstReverseIter>;
using ValuePtr = typename AllocTraits::pointer;
//////// F14Table policy
static constexpr bool prefetchBeforeRehash() {
return true;
}
static constexpr bool prefetchBeforeCopy() {
return false;
}
static constexpr bool prefetchBeforeDestroy() {
return false;
}
static constexpr bool destroyItemOnClear() {
return false;
}
private:
static constexpr bool valueIsTriviallyCopyable() {
return AllocatorHasDefaultObjectConstruct<Alloc, Value, Value>::value &&
AllocatorHasDefaultObjectDestroy<Alloc, Value>::value &&
is_trivially_copyable<Value>::value;
}
public:
VectorContainerPolicy(
Hasher const& hasher,
KeyEqual const& keyEqual,
Alloc const& alloc)
: Super{hasher, keyEqual, alloc} {}
VectorContainerPolicy(VectorContainerPolicy const& rhs) : Super{rhs} {
// values_ will get allocated later to do the copy
}
VectorContainerPolicy(VectorContainerPolicy const& rhs, Alloc const& alloc)
: Super{rhs, alloc} {
// values_ will get allocated later to do the copy
}
VectorContainerPolicy(VectorContainerPolicy&& rhs) noexcept
: Super{std::move(rhs)}, values_{rhs.values_} {
rhs.values_ = nullptr;
}
VectorContainerPolicy(
VectorContainerPolicy&& rhs,
Alloc const& alloc) noexcept
: Super{std::move(rhs), alloc} {
if (kAllocIsAlwaysEqual || this->alloc() == rhs.alloc()) {
// common case
values_ = rhs.values_;
rhs.values_ = nullptr;
} else {
// table must be constructed in new memory
values_ = nullptr;
}
}
VectorContainerPolicy& operator=(VectorContainerPolicy const& rhs) {
if (this != &rhs) {
FOLLY_SAFE_DCHECK(values_ == nullptr, "");
Super::operator=(rhs);
}
return *this;
}
VectorContainerPolicy& operator=(VectorContainerPolicy&& rhs) noexcept {
if (this != &rhs) {
FOLLY_SAFE_DCHECK(values_ == nullptr, "");
bool transfer =
AllocTraits::propagate_on_container_move_assignment::value ||
kAllocIsAlwaysEqual || this->alloc() == rhs.alloc();
Super::operator=(std::move(rhs));
if (transfer) {
values_ = rhs.values_;
rhs.values_ = nullptr;
}
}
return *this;
}
void swapPolicy(VectorContainerPolicy& rhs) {
using std::swap;
this->swapBasePolicy(rhs);
swap(values_, rhs.values_);
}
template <typename K>
std::size_t computeKeyHash(K const& key) const {
static_assert(
Super::isAvalanchingHasher() == IsAvalanchingHasher<Hasher, K>::value,
"");
return this->hasher()(key);
}
std::size_t computeKeyHash(VectorContainerIndexSearch const& key) const {
return computeItemHash(key.index_);
}
using Super::keyForValue;
std::size_t computeItemHash(Item const& item) const {
return this->computeKeyHash(keyForValue(values_[item]));
}
bool keyMatchesItem(VectorContainerIndexSearch const& key, Item const& item)
const {
return key.index_ == item;
}
template <typename K>
bool keyMatchesItem(K const& key, Item const& item) const {
return this->keyEqual()(key, keyForValue(values_[item]));
}
Key const& keyForValue(VectorContainerIndexSearch const& arg) const {
return keyForValue(values_[arg.index_]);
}
VectorContainerIndexSearch buildArgForItem(Item const& item) const {
return {item};
}
Value&& valueAtItemForExtract(Item& item) {
return std::move(values_[item]);
}
void constructValueAtItem(
std::size_t /*size*/,
Item* itemAddr,
VectorContainerIndexSearch arg) {
*itemAddr = arg.index_;
}
template <typename... Args>
void constructValueAtItem(std::size_t size, Item* itemAddr, Args&&... args) {
Alloc& a = this->alloc();
FOLLY_SAFE_DCHECK(size < std::numeric_limits<InternalSizeType>::max(), "");
*itemAddr = static_cast<InternalSizeType>(size);
auto dst = std::addressof(values_[size]);
// TODO(T31574848): clean up assume-s used to optimize placement new
assume(dst != nullptr);
AllocTraits::construct(a, dst, std::forward<Args>(args)...);
}
void moveItemDuringRehash(Item* itemAddr, Item& src) {
*itemAddr = src;
}
void prefetchValue(Item const& item) const {
prefetchAddr(std::addressof(values_[item]));
}
void destroyItem(Item&) {}
template <typename T>
std::enable_if_t<std::is_nothrow_move_constructible<T>::value>
complainUnlessNothrowMove() {}
template <typename T>
[[deprecated(
"use F14NodeMap/Set or mark key and mapped type move constructor nothrow")]] std::
enable_if_t<!std::is_nothrow_move_constructible<T>::value>
complainUnlessNothrowMove() {}
void transfer(Alloc& a, Value* src, Value* dst, std::size_t n) {
complainUnlessNothrowMove<Key>();
complainUnlessNothrowMove<lift_unit_t<MappedTypeOrVoid>>();
auto origSrc = src;
if (valueIsTriviallyCopyable()) {
std::memcpy(static_cast<void*>(dst), src, n * sizeof(Value));
} else {
for (std::size_t i = 0; i < n; ++i, ++src, ++dst) {
// TODO(T31574848): clean up assume-s used to optimize placement new
assume(dst != nullptr);
AllocTraits::construct(a, dst, Super::moveValue(*src));
if (kIsMap) {
AllocTraits::destroy(a, launder(src));
} else {
AllocTraits::destroy(a, src);
}
}
}
this->afterDestroyWithoutDeallocate(origSrc, n);
}
template <typename P, typename V>
bool beforeBuildImpl(std::size_t size, P&& rhs, V const& constructorArgFor) {
Alloc& a = this->alloc();
FOLLY_SAFE_DCHECK(values_ != nullptr, "");
auto src = std::addressof(rhs.values_[0]);
Value* dst = std::addressof(values_[0]);
if (valueIsTriviallyCopyable()) {
std::memcpy(dst, src, size * sizeof(Value));
} else {
for (std::size_t i = 0; i < size; ++i, ++src, ++dst) {
try {
// TODO(T31574848): clean up assume-s used to optimize placement new
assume(dst != nullptr);
AllocTraits::construct(a, dst, constructorArgFor(*src));
} catch (...) {
for (Value* cleanup = std::addressof(values_[0]); cleanup != dst;
++cleanup) {
AllocTraits::destroy(a, cleanup);
}
throw;
}
}
}
return true;
}
bool beforeBuild(
std::size_t size,
std::size_t /*capacity*/,
VectorContainerPolicy const& rhs) {
return beforeBuildImpl(size, rhs, [](Value const& v) { return v; });
}
bool beforeBuild(
std::size_t size,
std::size_t /*capacity*/,
VectorContainerPolicy&& rhs) {
return beforeBuildImpl(
size, rhs, [](Value& v) { return Super::moveValue(v); });
}
template <typename P>
void afterBuild(
bool /*undoState*/,
bool success,
std::size_t /*size*/,
std::size_t /*capacity*/,
P&& /*rhs*/) {
// buildArgForItem can be used to construct a new item trivially,
// so no failure between beforeBuild and afterBuild should be possible
FOLLY_SAFE_DCHECK(success, "");
}
private:
// Returns the byte offset of the first Value in a unified allocation
// that first holds prefixBytes of data, where prefixBytes comes from
// Chunk storage and hence must be at least 8-byte aligned (sub-Chunk
// allocations always have an even capacity and sizeof(Item) == 4).
static std::size_t valuesOffset(std::size_t prefixBytes) {
FOLLY_SAFE_DCHECK((prefixBytes % 8) == 0, "");
if (alignof(Value) > 8) {
prefixBytes = -(-prefixBytes & ~(alignof(Value) - 1));
}
FOLLY_SAFE_DCHECK((prefixBytes % alignof(Value)) == 0, "");
return prefixBytes;
}
// Returns the total number of bytes that should be allocated to store
// prefixBytes of Chunks and valueCapacity values.
static std::size_t allocSize(
std::size_t prefixBytes,
std::size_t valueCapacity) {
return valuesOffset(prefixBytes) + sizeof(Value) * valueCapacity;
}
public:
ValuePtr beforeRehash(
std::size_t size,
std::size_t oldCapacity,
std::size_t newCapacity,
std::size_t chunkAllocSize,
BytePtr& outChunkAllocation) {
FOLLY_SAFE_DCHECK(
size <= oldCapacity && ((values_ == nullptr) == (oldCapacity == 0)) &&
newCapacity > 0 &&
newCapacity <= (std::numeric_limits<Item>::max)(),
"");
outChunkAllocation =
allocateOverAligned<ByteAlloc, kRequiredVectorAlignment>(
ByteAlloc{Super::alloc()}, allocSize(chunkAllocSize, newCapacity));
ValuePtr before = values_;
ValuePtr after = std::pointer_traits<ValuePtr>::pointer_to(
*static_cast<Value*>(static_cast<void*>(
&*outChunkAllocation + valuesOffset(chunkAllocSize))));
if (size > 0) {
Alloc& a{this->alloc()};
transfer(a, std::addressof(before[0]), std::addressof(after[0]), size);
}
values_ = after;
return before;
}
FOLLY_NOINLINE void afterFailedRehash(ValuePtr state, std::size_t size) {
// state holds the old storage
Alloc& a = this->alloc();
if (size > 0) {
transfer(a, std::addressof(values_[0]), std::addressof(state[0]), size);
}
values_ = state;
}
void afterRehash(
ValuePtr state,
bool success,
std::size_t size,
std::size_t oldCapacity,
std::size_t newCapacity,
BytePtr chunkAllocation,
std::size_t chunkAllocSize) {
if (!success) {
afterFailedRehash(state, size);
}
// on success, chunkAllocation is the old allocation, on failure it is the
// new one
if (chunkAllocation != nullptr) {
deallocateOverAligned<ByteAlloc, kRequiredVectorAlignment>(
ByteAlloc{Super::alloc()},
chunkAllocation,
allocSize(chunkAllocSize, (success ? oldCapacity : newCapacity)));
}
}
void beforeClear(std::size_t size, std::size_t capacity) {
FOLLY_SAFE_DCHECK(
size <= capacity && ((values_ == nullptr) == (capacity == 0)), "");
Alloc& a = this->alloc();
for (std::size_t i = 0; i < size; ++i) {
AllocTraits::destroy(a, std::addressof(values_[i]));
}
}
void beforeReset(std::size_t size, std::size_t capacity) {
beforeClear(size, capacity);
}
void afterReset(
std::size_t /*size*/,
std::size_t capacity,
BytePtr chunkAllocation,
std::size_t chunkAllocSize) {
if (chunkAllocation != nullptr) {
deallocateOverAligned<ByteAlloc, kRequiredVectorAlignment>(
ByteAlloc{Super::alloc()},
chunkAllocation,
allocSize(chunkAllocSize, capacity));
values_ = nullptr;
}
}
template <typename V>
void visitPolicyAllocationClasses(
std::size_t chunkAllocSize,
std::size_t /*size*/,
std::size_t capacity,
V&& visitor) const {
FOLLY_SAFE_DCHECK((chunkAllocSize == 0) == (capacity == 0), "");
if (chunkAllocSize > 0) {
visitor(
allocationBytesForOverAligned<ByteAlloc, kRequiredVectorAlignment>(
allocSize(chunkAllocSize, capacity)),
1);
}
}
// Iterator stuff
Iter linearBegin(std::size_t size) const {
return Iter{(size > 0 ? values_ + size - 1 : nullptr), values_};
}
Iter linearEnd() const {
return Iter{nullptr, nullptr};
}
//////// F14BasicMap/Set policy
Iter makeIter(ItemIter const& underlying) const {
if (underlying.atEnd()) {
return linearEnd();
} else {
assume(values_ + underlying.item() != nullptr);
assume(values_ != nullptr);
return Iter{values_ + underlying.item(), values_};
}
}
ConstIter makeConstIter(ItemIter const& underlying) const {
return makeIter(underlying);
}
Item iterToIndex(ConstIter const& iter) const {
auto n = iter.index();
assume(n <= std::numeric_limits<Item>::max());
return static_cast<Item>(n);
}
Iter indexToIter(Item index) const {
return Iter{values_ + index, values_};
}
Iter iter(ReverseIter it) {
return Iter{it, values_};
}
ConstIter iter(ConstReverseIter it) const {
return ConstIter{it, values_};
}
ReverseIter riter(Iter it) {
return it.current_;
}
ConstReverseIter riter(ConstIter it) const {
return it.current_;
}
ValuePtr values_{nullptr};
};
template <
template <typename, typename, typename, typename, typename> class Policy,
typename Key,
typename Mapped,
typename Hasher,
typename KeyEqual,
typename Alloc>
using MapPolicyWithDefaults = Policy<
Key,
Mapped,
VoidDefault<Hasher, DefaultHasher<Key>>,
VoidDefault<KeyEqual, DefaultKeyEqual<Key>>,
VoidDefault<Alloc, DefaultAlloc<std::pair<Key const, Mapped>>>>;
template <
template <typename, typename, typename, typename, typename> class Policy,
typename Key,
typename Hasher,
typename KeyEqual,
typename Alloc>
using SetPolicyWithDefaults = Policy<
Key,
void,
VoidDefault<Hasher, DefaultHasher<Key>>,
VoidDefault<KeyEqual, DefaultKeyEqual<Key>>,
VoidDefault<Alloc, DefaultAlloc<Key>>>;
} // namespace detail
} // namespace f14
} // namespace folly
#endif // FOLLY_F14_VECTOR_INTRINSICS_AVAILABLE