171 lines
5.7 KiB
C++
171 lines
5.7 KiB
C++
/*!
|
|
@file
|
|
Defines `boost::hana::curry`.
|
|
|
|
@copyright Louis Dionne 2013-2016
|
|
Distributed under the Boost Software License, Version 1.0.
|
|
(See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
#ifndef BOOST_HANA_FUNCTIONAL_CURRY_HPP
|
|
#define BOOST_HANA_FUNCTIONAL_CURRY_HPP
|
|
|
|
#include <boost/hana/config.hpp>
|
|
#include <boost/hana/detail/decay.hpp>
|
|
#include <boost/hana/functional/apply.hpp>
|
|
#include <boost/hana/functional/partial.hpp>
|
|
|
|
#include <cstddef>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
|
|
BOOST_HANA_NAMESPACE_BEGIN
|
|
//! @ingroup group-functional
|
|
//! Curry a function up to the given number of arguments.
|
|
//!
|
|
//! [Currying][Wikipedia.currying] is a technique in which we consider a
|
|
//! function taking multiple arguments (or, equivalently, a tuple of
|
|
//! arguments), and turn it into a function which takes a single argument
|
|
//! and returns a function to handle the remaining arguments. To help
|
|
//! visualize, let's denote the type of a function `f` which takes
|
|
//! arguments of types `X1, ..., Xn` and returns a `R` as
|
|
//! @code
|
|
//! (X1, ..., Xn) -> R
|
|
//! @endcode
|
|
//!
|
|
//! Then, currying is the process of taking `f` and turning it into an
|
|
//! equivalent function (call it `g`) of type
|
|
//! @code
|
|
//! X1 -> (X2 -> (... -> (Xn -> R)))
|
|
//! @endcode
|
|
//!
|
|
//! This gives us the following equivalence, where `x1`, ..., `xn` are
|
|
//! objects of type `X1`, ..., `Xn` respectively:
|
|
//! @code
|
|
//! f(x1, ..., xn) == g(x1)...(xn)
|
|
//! @endcode
|
|
//!
|
|
//! Currying can be useful in several situations, especially when working
|
|
//! with higher-order functions.
|
|
//!
|
|
//! This `curry` utility is an implementation of currying in C++.
|
|
//! Specifically, `curry<n>(f)` is a function such that
|
|
//! @code
|
|
//! curry<n>(f)(x1)...(xn) == f(x1, ..., xn)
|
|
//! @endcode
|
|
//!
|
|
//! Note that the `n` has to be specified explicitly because the existence
|
|
//! of functions with variadic arguments in C++ make it impossible to know
|
|
//! when currying should stop.
|
|
//!
|
|
//! Unlike usual currying, this implementation also allows a curried
|
|
//! function to be called with several arguments at a time. Hence, the
|
|
//! following always holds
|
|
//! @code
|
|
//! curry<n>(f)(x1, ..., xk) == curry<n - k>(f)(x1)...(xk)
|
|
//! @endcode
|
|
//!
|
|
//! Of course, this requires `k` to be less than or equal to `n`; failure
|
|
//! to satisfy this will trigger a static assertion. This syntax is
|
|
//! supported because it makes curried functions usable where normal
|
|
//! functions are expected.
|
|
//!
|
|
//! Another "extension" is that `curry<0>(f)` is supported: `curry<0>(f)`
|
|
//! is a nullary function; whereas the classical definition for currying
|
|
//! seems to leave this case undefined, as nullary functions don't make
|
|
//! much sense in purely functional languages.
|
|
//!
|
|
//!
|
|
//! Example
|
|
//! -------
|
|
//! @include example/functional/curry.cpp
|
|
//!
|
|
//!
|
|
//! [Wikipedia.currying]: http://en.wikipedia.org/wiki/Currying
|
|
#ifdef BOOST_HANA_DOXYGEN_INVOKED
|
|
template <std::size_t n>
|
|
constexpr auto curry = [](auto&& f) {
|
|
return [perfect-capture](auto&& x1) {
|
|
return [perfect-capture](auto&& x2) {
|
|
...
|
|
return [perfect-capture](auto&& xn) -> decltype(auto) {
|
|
return forwarded(f)(
|
|
forwarded(x1), forwarded(x2), ..., forwarded(xn)
|
|
);
|
|
};
|
|
};
|
|
};
|
|
};
|
|
#else
|
|
template <std::size_t n, typename F>
|
|
struct curry_t;
|
|
|
|
template <std::size_t n>
|
|
struct make_curry_t {
|
|
template <typename F>
|
|
constexpr curry_t<n, typename detail::decay<F>::type>
|
|
operator()(F&& f) const { return {static_cast<F&&>(f)}; }
|
|
};
|
|
|
|
template <std::size_t n>
|
|
constexpr make_curry_t<n> curry{};
|
|
|
|
namespace curry_detail {
|
|
template <std::size_t n>
|
|
constexpr make_curry_t<n> curry_or_call{};
|
|
|
|
template <>
|
|
constexpr auto curry_or_call<0> = apply;
|
|
}
|
|
|
|
template <std::size_t n, typename F>
|
|
struct curry_t {
|
|
F f;
|
|
|
|
template <typename ...X>
|
|
constexpr decltype(auto) operator()(X&& ...x) const& {
|
|
static_assert(sizeof...(x) <= n,
|
|
"too many arguments provided to boost::hana::curry");
|
|
return curry_detail::curry_or_call<n - sizeof...(x)>(
|
|
partial(f, static_cast<X&&>(x)...)
|
|
);
|
|
}
|
|
|
|
template <typename ...X>
|
|
constexpr decltype(auto) operator()(X&& ...x) & {
|
|
static_assert(sizeof...(x) <= n,
|
|
"too many arguments provided to boost::hana::curry");
|
|
return curry_detail::curry_or_call<n - sizeof...(x)>(
|
|
partial(f, static_cast<X&&>(x)...)
|
|
);
|
|
}
|
|
|
|
template <typename ...X>
|
|
constexpr decltype(auto) operator()(X&& ...x) && {
|
|
static_assert(sizeof...(x) <= n,
|
|
"too many arguments provided to boost::hana::curry");
|
|
return curry_detail::curry_or_call<n - sizeof...(x)>(
|
|
partial(std::move(f), static_cast<X&&>(x)...)
|
|
);
|
|
}
|
|
};
|
|
|
|
template <typename F>
|
|
struct curry_t<0, F> {
|
|
F f;
|
|
|
|
constexpr decltype(auto) operator()() const&
|
|
{ return f(); }
|
|
|
|
constexpr decltype(auto) operator()() &
|
|
{ return f(); }
|
|
|
|
constexpr decltype(auto) operator()() &&
|
|
{ return std::move(f)(); }
|
|
};
|
|
#endif
|
|
BOOST_HANA_NAMESPACE_END
|
|
|
|
#endif // !BOOST_HANA_FUNCTIONAL_CURRY_HPP
|