Rocket.Chat.ReactNative/ios/Pods/Flipper-Folly/folly/io/IOBufQueue.h

657 lines
19 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <folly/ScopeGuard.h>
#include <folly/io/IOBuf.h>
#include <stdexcept>
#include <string>
namespace folly {
/**
* An IOBufQueue encapsulates a chain of IOBufs and provides
* convenience functions to append data to the back of the chain
* and remove data from the front.
*
* You may also prepend data into the headroom of the first buffer in the
* chain, if any.
*/
class IOBufQueue {
private:
/**
* This guard should be taken by any method that intends to do any changes
* to in data_ (e.g. appending to it).
*
* It flushes the writable tail cache and refills it on destruction.
*/
auto updateGuard() {
flushCache();
return folly::makeGuard([this] { updateWritableTailCache(); });
}
struct WritableRangeCacheData {
std::pair<uint8_t*, uint8_t*> cachedRange;
bool attached{false};
WritableRangeCacheData() = default;
WritableRangeCacheData(WritableRangeCacheData&& other)
: cachedRange(other.cachedRange), attached(other.attached) {
other.cachedRange = {nullptr, nullptr};
other.attached = false;
}
WritableRangeCacheData& operator=(WritableRangeCacheData&& other) {
cachedRange = other.cachedRange;
attached = other.attached;
other.cachedRange = {nullptr, nullptr};
other.attached = false;
return *this;
}
WritableRangeCacheData(const WritableRangeCacheData&) = delete;
WritableRangeCacheData& operator=(const WritableRangeCacheData&) = delete;
};
public:
struct Options {
Options() : cacheChainLength(false) {}
bool cacheChainLength;
};
/**
* Commonly used Options, currently the only possible value other than
* the default.
*/
static Options cacheChainLength() {
Options options;
options.cacheChainLength = true;
return options;
}
/**
* WritableRangeCache represents a cache of current writable tail and provides
* cheap and simple interface to append to it that avoids paying the cost of
* preallocate/postallocate pair (i.e. indirections and checks).
*
* The cache is flushed on destruction/copy/move and on non-const accesses to
* the underlying IOBufQueue.
*
* Note: there can be only one active cache for a given IOBufQueue, i.e. when
* you fill a cache object it automatically invalidates other
* cache (if any).
*/
class WritableRangeCache {
public:
explicit WritableRangeCache(folly::IOBufQueue* q = nullptr) : queue_(q) {
if (queue_) {
fillCache();
}
}
/**
* Move constructor/assignment can move the cached range, but must update
* the reference in IOBufQueue.
*/
WritableRangeCache(WritableRangeCache&& other)
: data_(std::move(other.data_)), queue_(other.queue_) {
if (data_.attached) {
queue_->updateCacheRef(data_);
}
}
WritableRangeCache& operator=(WritableRangeCache&& other) {
if (data_.attached) {
queue_->clearWritableRangeCache();
}
data_ = std::move(other.data_);
queue_ = other.queue_;
if (data_.attached) {
queue_->updateCacheRef(data_);
}
return *this;
}
/**
* Copy constructor/assignment cannot copy the cached range.
*/
WritableRangeCache(const WritableRangeCache& other)
: queue_(other.queue_) {}
WritableRangeCache& operator=(const WritableRangeCache& other) {
if (data_.attached) {
queue_->clearWritableRangeCache();
}
queue_ = other.queue_;
return *this;
}
~WritableRangeCache() {
if (data_.attached) {
queue_->clearWritableRangeCache();
}
}
/**
* Reset the underlying IOBufQueue, will flush current cache if present.
*/
void reset(IOBufQueue* q) {
if (data_.attached) {
queue_->clearWritableRangeCache();
}
queue_ = q;
if (queue_) {
fillCache();
}
}
/**
* Get a pointer to the underlying IOBufQueue object.
*/
IOBufQueue* queue() {
return queue_;
}
/**
* Return a pointer to the start of cached writable tail.
*
* Note: doesn't populate cache.
*/
uint8_t* writableData() {
dcheckIntegrity();
return data_.cachedRange.first;
}
/**
* Return a length of cached writable tail.
*
* Note: doesn't populate cache.
*/
size_t length() {
dcheckIntegrity();
return data_.cachedRange.second - data_.cachedRange.first;
}
/**
* Mark n bytes as occupied (e.g. postallocate).
*/
void append(size_t n) {
dcheckIntegrity();
// This can happen only if somebody is misusing the interface.
// E.g. calling append after touching IOBufQueue or without checking
// the length().
if (LIKELY(data_.cachedRange.first != nullptr)) {
DCHECK_LE(n, length());
data_.cachedRange.first += n;
} else {
appendSlow(n);
}
}
/**
* Same as append(n), but avoids checking if there is a cache.
* The caller must guarantee that the cache is set (e.g. the caller just
* called fillCache or checked that it's not empty).
*/
void appendUnsafe(size_t n) {
data_.cachedRange.first += n;
}
/**
* Fill the cache of writable tail from the underlying IOBufQueue.
*/
void fillCache() {
queue_->fillWritableRangeCache(data_);
}
private:
WritableRangeCacheData data_;
IOBufQueue* queue_;
FOLLY_NOINLINE void appendSlow(size_t n) {
queue_->postallocate(n);
}
void dcheckIntegrity() {
// Tail start should always be less than tail end.
DCHECK_LE(
(void*)data_.cachedRange.first, (void*)data_.cachedRange.second);
DCHECK(
data_.cachedRange.first != nullptr ||
data_.cachedRange.second == nullptr);
// Cached range should be always empty if the cache is not attached.
DCHECK(
data_.attached ||
(data_.cachedRange.first == nullptr &&
data_.cachedRange.second == nullptr));
// We cannot be in attached state if the queue_ is not set.
DCHECK(queue_ != nullptr || !data_.attached);
// If we're attached and the cache is not empty, then it should coincide
// with the tail buffer.
DCHECK(
!data_.attached || data_.cachedRange.first == nullptr ||
(queue_->head_ != nullptr &&
data_.cachedRange.first >= queue_->head_->prev()->writableTail() &&
data_.cachedRange.second ==
queue_->head_->prev()->writableTail() +
queue_->head_->prev()->tailroom()));
}
};
explicit IOBufQueue(const Options& options = Options());
~IOBufQueue();
/**
* Return a space to prepend bytes and the amount of headroom available.
*/
std::pair<void*, std::size_t> headroom();
/**
* Indicate that n bytes from the headroom have been used.
*/
void markPrepended(std::size_t n);
/**
* Prepend an existing range; throws std::overflow_error if not enough
* room.
*/
void prepend(const void* buf, std::size_t n);
/**
* Add a buffer or buffer chain to the end of this queue. The
* queue takes ownership of buf.
*
* If pack is true, we try to reduce wastage at the end of this queue
* by copying some data from the first buffers in the buf chain (and
* releasing the buffers), if possible. If pack is false, we leave
* the chain topology unchanged.
*/
void append(std::unique_ptr<folly::IOBuf>&& buf, bool pack = false);
void append(const folly::IOBuf& buf, bool pack = false);
/**
* Add a queue to the end of this queue. The queue takes ownership of
* all buffers from the other queue.
*/
void append(IOBufQueue& other, bool pack = false);
void append(IOBufQueue&& other, bool pack = false) {
append(other, pack); // call lvalue reference overload, above
}
/**
* Copy len bytes, starting at buf, to the end of this queue.
* The caller retains ownership of the source data.
*/
void append(const void* buf, size_t len);
/**
* Copy a string to the end of this queue.
* The caller retains ownership of the source data.
*/
void append(StringPiece sp) {
append(sp.data(), sp.size());
}
/**
* Append a chain of IOBuf objects that point to consecutive regions
* within buf.
*
* Just like IOBuf::wrapBuffer, this should only be used when the caller
* knows ahead of time and can ensure that all IOBuf objects that will point
* to this buffer will be destroyed before the buffer itself is destroyed;
* all other caveats from wrapBuffer also apply.
*
* Every buffer except for the last will wrap exactly blockSize bytes.
* Importantly, this method may be used to wrap buffers larger than 4GB.
*/
void wrapBuffer(
const void* buf,
size_t len,
std::size_t blockSize = (1U << 31)); // default block size: 2GB
/**
* Obtain a writable block of contiguous bytes at the end of this
* queue, allocating more space if necessary. The amount of space
* reserved will be at least min. If min contiguous space is not
* available at the end of the queue, and IOBuf with size newAllocationSize
* is appended to the chain and returned. The actual available space
* may be larger than newAllocationSize, but will be truncated to max,
* if specified.
*
* If the caller subsequently writes anything into the returned space,
* it must call the postallocate() method.
*
* @return The starting address of the block and the length in bytes.
*
* @note The point of the preallocate()/postallocate() mechanism is
* to support I/O APIs such as Thrift's TAsyncSocket::ReadCallback
* that request a buffer from the application and then, in a later
* callback, tell the application how much of the buffer they've
* filled with data.
*/
std::pair<void*, std::size_t> preallocate(
std::size_t min,
std::size_t newAllocationSize,
std::size_t max = std::numeric_limits<std::size_t>::max()) {
dcheckCacheIntegrity();
if (LIKELY(writableTail() != nullptr && tailroom() >= min)) {
return std::make_pair(
writableTail(), std::min<std::size_t>(max, tailroom()));
}
return preallocateSlow(min, newAllocationSize, max);
}
/**
* Tell the queue that the caller has written data into the first n
* bytes provided by the previous preallocate() call.
*
* @note n should be less than or equal to the size returned by
* preallocate(). If n is zero, the caller may skip the call
* to postallocate(). If n is nonzero, the caller must not
* invoke any other non-const methods on this IOBufQueue between
* the call to preallocate and the call to postallocate().
*/
void postallocate(std::size_t n) {
dcheckCacheIntegrity();
DCHECK_LE(
(void*)(cachePtr_->cachedRange.first + n),
(void*)cachePtr_->cachedRange.second);
cachePtr_->cachedRange.first += n;
}
/**
* Obtain a writable block of n contiguous bytes, allocating more space
* if necessary, and mark it as used. The caller can fill it later.
*/
void* allocate(std::size_t n) {
void* p = preallocate(n, n).first;
postallocate(n);
return p;
}
void* writableTail() const {
dcheckCacheIntegrity();
return cachePtr_->cachedRange.first;
}
size_t tailroom() const {
dcheckCacheIntegrity();
return cachePtr_->cachedRange.second - cachePtr_->cachedRange.first;
}
/**
* Split off the first n bytes of the queue into a separate IOBuf chain,
* and transfer ownership of the new chain to the caller. The IOBufQueue
* retains ownership of everything after the split point.
*
* @warning If the split point lies in the middle of some IOBuf within
* the chain, this function may, as an implementation detail,
* clone that IOBuf.
*
* @throws std::underflow_error if n exceeds the number of bytes
* in the queue.
*/
std::unique_ptr<folly::IOBuf> split(size_t n) {
return split(n, true);
}
/**
* Similar to split, but will return the entire queue instead of throwing
* if n exceeds the number of bytes in the queue.
*/
std::unique_ptr<folly::IOBuf> splitAtMost(size_t n) {
return split(n, false);
}
/**
* Similar to IOBuf::trimStart, but works on the whole queue. Will
* pop off buffers that have been completely trimmed.
*/
void trimStart(size_t amount);
/**
* Similar to trimStart, but will trim at most amount bytes and returns
* the number of bytes trimmed.
*/
size_t trimStartAtMost(size_t amount);
/**
* Similar to IOBuf::trimEnd, but works on the whole queue. Will
* pop off buffers that have been completely trimmed.
*/
void trimEnd(size_t amount);
/**
* Similar to trimEnd, but will trim at most amount bytes and returns
* the number of bytes trimmed.
*/
size_t trimEndAtMost(size_t amount);
/**
* Transfer ownership of the queue's entire IOBuf chain to the caller.
*/
std::unique_ptr<folly::IOBuf> move() {
auto guard = updateGuard();
std::unique_ptr<folly::IOBuf> res = std::move(head_);
chainLength_ = 0;
return res;
}
/**
* Access the front IOBuf.
*
* Note: caller will see the current state of the chain, but may not see
* future updates immediately, due to the presence of a tail cache.
* Note: the caller may potentially clone the chain, thus marking all buffers
* as shared. We may still continue writing to the tail of the last
* IOBuf without checking if it's shared, but this is fine, since the
* cloned IOBufs won't reference that data.
*/
const folly::IOBuf* front() const {
flushCache();
return head_.get();
}
/**
* returns the first IOBuf in the chain and removes it from the chain
*
* @return first IOBuf in the chain or nullptr if none.
*/
std::unique_ptr<folly::IOBuf> pop_front();
/**
* Total chain length, only valid if cacheLength was specified in the
* constructor.
*/
size_t chainLength() const {
if (UNLIKELY(!options_.cacheChainLength)) {
throw std::invalid_argument("IOBufQueue: chain length not cached");
}
dcheckCacheIntegrity();
return chainLength_ + (cachePtr_->cachedRange.first - tailStart_);
}
/**
* Returns true iff the IOBuf chain length is 0.
*/
bool empty() const {
dcheckCacheIntegrity();
return !head_ ||
(head_->empty() && cachePtr_->cachedRange.first == tailStart_);
}
const Options& options() const {
return options_;
}
/**
* Clear the queue. Note that this does not release the buffers, it
* just sets their length to zero; useful if you want to reuse the
* same queue without reallocating.
*/
void clear();
/**
* Append the queue to a std::string. Non-destructive.
*/
void appendToString(std::string& out) const;
/**
* Calls IOBuf::gather() on the head of the queue, if it exists.
*/
void gather(std::size_t maxLength);
/** Movable */
IOBufQueue(IOBufQueue&&) noexcept;
IOBufQueue& operator=(IOBufQueue&&);
static constexpr size_t kMaxPackCopy = 4096;
private:
std::unique_ptr<folly::IOBuf> split(size_t n, bool throwOnUnderflow);
static const size_t kChainLengthNotCached = (size_t)-1;
/** Not copyable */
IOBufQueue(const IOBufQueue&) = delete;
IOBufQueue& operator=(const IOBufQueue&) = delete;
Options options_;
// NOTE that chainLength_ is still updated even if !options_.cacheChainLength
// because doing it unchecked in postallocate() is faster (no (mis)predicted
// branch)
mutable size_t chainLength_{0};
/**
* Everything that has been appended but not yet discarded or moved out
* Note: anything that needs to operate on a tail should either call
* flushCache() or grab updateGuard() (it will flush the cache itself).
*/
std::unique_ptr<folly::IOBuf> head_;
mutable uint8_t* tailStart_{nullptr};
WritableRangeCacheData* cachePtr_{nullptr};
WritableRangeCacheData localCache_;
void dcheckCacheIntegrity() const {
// Tail start should always be less than tail end.
DCHECK_LE((void*)tailStart_, (void*)cachePtr_->cachedRange.first);
DCHECK_LE(
(void*)cachePtr_->cachedRange.first,
(void*)cachePtr_->cachedRange.second);
DCHECK(
cachePtr_->cachedRange.first != nullptr ||
cachePtr_->cachedRange.second == nullptr);
// There is always an attached cache instance.
DCHECK(cachePtr_->attached);
// Either cache is empty or it coincides with the tail.
DCHECK(
cachePtr_->cachedRange.first == nullptr ||
(head_ != nullptr && tailStart_ == head_->prev()->writableTail() &&
tailStart_ <= cachePtr_->cachedRange.first &&
cachePtr_->cachedRange.first >= head_->prev()->writableTail() &&
cachePtr_->cachedRange.second ==
head_->prev()->writableTail() + head_->prev()->tailroom()));
}
/**
* Populate dest with writable tail range cache.
*/
void fillWritableRangeCache(WritableRangeCacheData& dest) {
dcheckCacheIntegrity();
if (cachePtr_ != &dest) {
dest = std::move(*cachePtr_);
cachePtr_ = &dest;
}
}
/**
* Clear current writable tail cache and reset it to localCache_
*/
void clearWritableRangeCache() {
flushCache();
if (cachePtr_ != &localCache_) {
localCache_ = std::move(*cachePtr_);
cachePtr_ = &localCache_;
}
DCHECK(cachePtr_ == &localCache_ && localCache_.attached);
}
/**
* Commit any pending changes to the tail of the queue.
*/
void flushCache() const {
dcheckCacheIntegrity();
if (tailStart_ != cachePtr_->cachedRange.first) {
auto buf = head_->prev();
DCHECK_EQ(
(void*)(buf->writableTail() + buf->tailroom()),
(void*)cachePtr_->cachedRange.second);
auto len = cachePtr_->cachedRange.first - tailStart_;
buf->append(len);
chainLength_ += len;
tailStart_ += len;
}
}
// For WritableRangeCache move assignment/construction.
void updateCacheRef(WritableRangeCacheData& newRef) {
cachePtr_ = &newRef;
}
/**
* Update cached writable tail range. Called by updateGuard()
*/
void updateWritableTailCache() {
if (LIKELY(head_ != nullptr)) {
IOBuf* buf = head_->prev();
if (LIKELY(!buf->isSharedOne())) {
tailStart_ = buf->writableTail();
cachePtr_->cachedRange = std::pair<uint8_t*, uint8_t*>(
tailStart_, tailStart_ + buf->tailroom());
return;
}
}
tailStart_ = nullptr;
cachePtr_->cachedRange = std::pair<uint8_t*, uint8_t*>();
}
std::pair<void*, std::size_t> preallocateSlow(
std::size_t min,
std::size_t newAllocationSize,
std::size_t max);
};
} // namespace folly