Rocket.Chat.ReactNative/ios/Pods/Flipper-Folly/folly/executors/EDFThreadPoolExecutor.cpp

472 lines
13 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <array>
#include <atomic>
#include <chrono>
#include <cstddef>
#include <exception>
#include <limits>
#include <memory>
#include <queue>
#include <utility>
#include <vector>
#include <folly/ScopeGuard.h>
#include <folly/executors/EDFThreadPoolExecutor.h>
namespace folly {
namespace {
constexpr folly::StringPiece executorName = "EDFThreadPoolExecutor";
}
class EDFThreadPoolExecutor::Task {
public:
explicit Task(Func&& f, int repeat, uint64_t deadline)
: f_(std::move(f)), total_(repeat), deadline_(deadline) {}
explicit Task(std::vector<Func>&& fs, uint64_t deadline)
: fs_(std::move(fs)), total_(fs_.size()), deadline_(deadline) {}
uint64_t getDeadline() const {
return deadline_;
}
bool isDone() const {
return iter_.load(std::memory_order_relaxed) >= total_;
}
int next() {
if (isDone()) {
return -1;
}
int result = iter_.fetch_add(1, std::memory_order_relaxed);
return result < total_ ? result : -1;
}
void run(int i) {
folly::RequestContextScopeGuard guard(context_);
if (f_) {
f_();
if (i >= total_ - 1) {
std::exchange(f_, nullptr);
}
} else {
DCHECK(0 <= i && i < total_);
fs_[i]();
std::exchange(fs_[i], nullptr);
}
}
Func f_;
std::vector<Func> fs_;
std::atomic<int> iter_{0};
int total_;
uint64_t deadline_;
TaskStats stats_;
std::shared_ptr<RequestContext> context_ = RequestContext::saveContext();
std::chrono::steady_clock::time_point enqueueTime_ =
std::chrono::steady_clock::now();
};
class EDFThreadPoolExecutor::TaskQueue {
public:
using TaskPtr = std::shared_ptr<Task>;
// This is not a `Synchronized` because we perform a few "peek" operations.
struct Bucket {
SharedMutex mutex;
struct Compare {
bool operator()(const TaskPtr& lhs, const TaskPtr& rhs) const {
return lhs->getDeadline() > rhs->getDeadline();
}
};
std::priority_queue<TaskPtr, std::vector<TaskPtr>, Compare> tasks;
std::atomic<bool> empty{true};
};
static constexpr std::size_t kNumBuckets = 2 << 5;
explicit TaskQueue()
: buckets_{}, curDeadline_(kLatestDeadline), numItems_(0) {}
void push(TaskPtr task) {
auto deadline = task->getDeadline();
auto& bucket = getBucket(deadline);
{
SharedMutex::WriteHolder guard(&bucket.mutex);
bucket.tasks.push(std::move(task));
bucket.empty.store(bucket.tasks.empty(), std::memory_order_relaxed);
}
numItems_.fetch_add(1, std::memory_order_seq_cst);
// Update current earliest deadline if necessary
uint64_t curDeadline = curDeadline_.load(std::memory_order_relaxed);
do {
if (curDeadline <= deadline) {
break;
}
} while (!curDeadline_.compare_exchange_weak(
curDeadline, deadline, std::memory_order_relaxed));
}
TaskPtr pop() {
bool needDeadlineUpdate = false;
for (;;) {
if (numItems_.load(std::memory_order_seq_cst) == 0) {
return nullptr;
}
auto curDeadline = curDeadline_.load(std::memory_order_relaxed);
auto& bucket = getBucket(curDeadline);
if (needDeadlineUpdate || bucket.empty.load(std::memory_order_relaxed)) {
// Try setting the next earliest deadline. However no need to
// enforce as there might be insertion happening.
// If there is no next deadline, we set deadline to `kLatestDeadline`.
curDeadline_.compare_exchange_weak(
curDeadline,
findNextDeadline(curDeadline),
std::memory_order_relaxed);
needDeadlineUpdate = false;
continue;
}
{
// Fast path. Take bucket reader lock.
SharedMutex::ReadHolder guard(&bucket.mutex);
if (bucket.tasks.empty()) {
continue;
}
const auto& task = bucket.tasks.top();
if (!task->isDone() && task->getDeadline() == curDeadline) {
return task;
}
// If the task is finished already, fall through to remove it.
}
{
// Take the writer lock to clean up the finished task.
SharedMutex::WriteHolder guard(&bucket.mutex);
if (bucket.tasks.empty()) {
continue;
}
const auto& task = bucket.tasks.top();
if (task->isDone()) {
// Current task finished. Remove from the queue.
bucket.tasks.pop();
bucket.empty.store(bucket.tasks.empty(), std::memory_order_relaxed);
numItems_.fetch_sub(1, std::memory_order_seq_cst);
}
}
// We may have finished processing the current task / bucket. Going back
// to the beginning of the loop to find the next bucket.
needDeadlineUpdate = true;
}
}
std::size_t size() const {
return numItems_.load(std::memory_order_seq_cst);
}
private:
Bucket& getBucket(uint64_t deadline) {
return buckets_[deadline % kNumBuckets];
}
uint64_t findNextDeadline(uint64_t prevDeadline) {
auto begin = prevDeadline % kNumBuckets;
uint64_t earliestDeadline = kLatestDeadline;
for (std::size_t i = 0; i < kNumBuckets; ++i) {
auto& bucket = buckets_[(begin + i) % kNumBuckets];
// Peek without locking first.
if (bucket.empty.load(std::memory_order_relaxed)) {
continue;
}
SharedMutex::ReadHolder guard(&bucket.mutex);
auto curDeadline = curDeadline_.load(std::memory_order_relaxed);
if (prevDeadline != curDeadline) {
// Bail out early if something already happened
return curDeadline;
}
// Verify again after locking
if (bucket.tasks.empty()) {
continue;
}
const auto& task = bucket.tasks.top();
auto deadline = task->getDeadline();
if (deadline < earliestDeadline) {
earliestDeadline = deadline;
}
if ((deadline <= prevDeadline) ||
(deadline - prevDeadline < kNumBuckets)) {
// Found the next highest priority, or new tasks were added.
// No need to scan anymore.
break;
}
}
return earliestDeadline;
}
std::array<Bucket, kNumBuckets> buckets_;
std::atomic<uint64_t> curDeadline_;
// All operations performed on `numItems_` explicitly specify memory
// ordering of `std::memory_order_seq_cst`. This is due to `numItems_`
// performing Dekker's algorithm with `numIdleThreads_` prior to consumer
// threads (workers) wait on `sem_`.
std::atomic<std::size_t> numItems_;
};
EDFThreadPoolExecutor::EDFThreadPoolExecutor(
std::size_t numThreads,
std::shared_ptr<ThreadFactory> threadFactory)
: ThreadPoolExecutor(numThreads, numThreads, std::move(threadFactory)),
taskQueue_(std::make_unique<TaskQueue>()) {
setNumThreads(numThreads);
registerThreadPoolExecutor(this);
}
EDFThreadPoolExecutor::~EDFThreadPoolExecutor() {
deregisterThreadPoolExecutor(this);
stop();
}
void EDFThreadPoolExecutor::add(Func f) {
add(std::move(f), kLatestDeadline);
}
void EDFThreadPoolExecutor::add(Func f, uint64_t deadline) {
add(std::move(f), 1, deadline);
}
void EDFThreadPoolExecutor::add(Func f, std::size_t total, uint64_t deadline) {
if (UNLIKELY(isJoin_.load(std::memory_order_relaxed) || total == 0)) {
return;
}
taskQueue_->push(std::make_shared<Task>(std::move(f), total, deadline));
auto numIdleThreads = numIdleThreads_.load(std::memory_order_seq_cst);
if (numIdleThreads > 0) {
// If idle threads are available notify them, otherwise all worker threads
// are running and will get around to this task in time.
sem_.post(std::min(total, numIdleThreads));
}
}
void EDFThreadPoolExecutor::add(std::vector<Func> fs, uint64_t deadline) {
if (UNLIKELY(fs.empty())) {
return;
}
auto total = fs.size();
taskQueue_->push(std::make_shared<Task>(std::move(fs), deadline));
auto numIdleThreads = numIdleThreads_.load(std::memory_order_seq_cst);
if (numIdleThreads > 0) {
// If idle threads are available notify them, otherwise all worker threads
// are running and will get around to this task in time.
sem_.post(std::min(total, numIdleThreads));
}
}
folly::Executor::KeepAlive<> EDFThreadPoolExecutor::deadlineExecutor(
uint64_t deadline) {
class DeadlineExecutor : public folly::Executor {
public:
static KeepAlive<> create(
uint64_t deadline,
KeepAlive<EDFThreadPoolExecutor> executor) {
return makeKeepAlive(new DeadlineExecutor(deadline, std::move(executor)));
}
void add(folly::Func f) override {
executor_->add(std::move(f), deadline_);
}
bool keepAliveAcquire() override {
const auto count =
keepAliveCount_.fetch_add(1, std::memory_order_relaxed);
DCHECK_GT(count, 0);
return true;
}
void keepAliveRelease() override {
const auto count =
keepAliveCount_.fetch_sub(1, std::memory_order_acq_rel);
DCHECK_GT(count, 0);
if (count == 1) {
delete this;
}
}
private:
DeadlineExecutor(
uint64_t deadline,
KeepAlive<EDFThreadPoolExecutor> executor)
: deadline_(deadline), executor_(std::move(executor)) {}
std::atomic<size_t> keepAliveCount_{1};
uint64_t deadline_;
KeepAlive<EDFThreadPoolExecutor> executor_;
};
return DeadlineExecutor::create(deadline, getKeepAliveToken(this));
}
void EDFThreadPoolExecutor::threadRun(ThreadPtr thread) {
this->threadPoolHook_.registerThread();
auto guard = folly::makeBlockingDisallowedGuard(executorName);
thread->startupBaton.post();
for (;;) {
auto task = take();
// Handle thread stopping
if (UNLIKELY(!task)) {
// Actually remove the thread from the list.
SharedMutex::WriteHolder w{&threadListLock_};
for (auto& o : observers_) {
o->threadStopped(thread.get());
}
threadList_.remove(thread);
stoppedThreads_.add(thread);
return;
}
int iter = task->next();
if (UNLIKELY(iter < 0)) {
// This task is already finished
continue;
}
thread->idle = false;
auto startTime = std::chrono::steady_clock::now();
task->stats_.waitTime = startTime - task->enqueueTime_;
try {
task->run(iter);
} catch (const std::exception& e) {
LOG(ERROR) << "EDFThreadPoolExecutor: func threw unhandled "
<< typeid(e).name() << " exception: " << e.what();
} catch (...) {
LOG(ERROR)
<< "EDFThreadPoolExecutor: func threw unhandled non-exception object";
}
task->stats_.runTime = std::chrono::steady_clock::now() - startTime;
thread->idle = true;
thread->lastActiveTime = std::chrono::steady_clock::now();
thread->taskStatsCallbacks->callbackList.withRLock([&](auto& callbacks) {
*thread->taskStatsCallbacks->inCallback = true;
SCOPE_EXIT {
*thread->taskStatsCallbacks->inCallback = false;
};
try {
for (auto& callback : callbacks) {
callback(task->stats_);
}
} catch (const std::exception& e) {
LOG(ERROR) << "EDFThreadPoolExecutor: task stats callback threw "
"unhandled "
<< typeid(e).name() << " exception: " << e.what();
} catch (...) {
LOG(ERROR) << "EDFThreadPoolExecutor: task stats callback threw "
"unhandled non-exception object";
}
});
}
}
// threadListLock_ is writelocked.
void EDFThreadPoolExecutor::stopThreads(std::size_t numThreads) {
threadsToStop_.fetch_add(numThreads, std::memory_order_relaxed);
sem_.post(numThreads);
}
// threadListLock_ is read (or write) locked.
std::size_t EDFThreadPoolExecutor::getPendingTaskCountImpl() const {
return taskQueue_->size();
}
bool EDFThreadPoolExecutor::shouldStop() {
// in normal cases, only do a read (prevents cache line bounces)
if (threadsToStop_.load(std::memory_order_relaxed) <= 0 ||
isJoin_.load(std::memory_order_relaxed)) {
return false;
}
// modify only if needed
if (threadsToStop_.fetch_sub(1, std::memory_order_relaxed) > 0) {
return true;
} else {
threadsToStop_.fetch_add(1, std::memory_order_relaxed);
return false;
}
}
std::shared_ptr<EDFThreadPoolExecutor::Task> EDFThreadPoolExecutor::take() {
if (UNLIKELY(shouldStop())) {
return nullptr;
}
if (auto task = taskQueue_->pop()) {
return task;
}
if (UNLIKELY(isJoin_.load(std::memory_order_relaxed))) {
return nullptr;
}
// No tasks on the horizon, so go sleep
numIdleThreads_.fetch_add(1, std::memory_order_seq_cst);
SCOPE_EXIT {
numIdleThreads_.fetch_sub(1, std::memory_order_seq_cst);
};
for (;;) {
if (UNLIKELY(shouldStop())) {
return nullptr;
}
if (auto task = taskQueue_->pop()) {
// It's possible to return a finished task here, in which case
// the worker will call this function again.
return task;
}
if (UNLIKELY(isJoin_.load(std::memory_order_relaxed))) {
return nullptr;
}
sem_.wait();
}
}
} // namespace folly