Rocket.Chat.ReactNative/ios/Pods/Flipper-Folly/folly/io/async/HHWheelTimer.cpp

402 lines
12 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/io/async/HHWheelTimer.h>
#include <cassert>
#include <folly/Memory.h>
#include <folly/Optional.h>
#include <folly/ScopeGuard.h>
#include <folly/container/BitIterator.h>
#include <folly/io/async/Request.h>
#include <folly/lang/Bits.h>
namespace folly {
/**
* We want to select the default interval carefully.
* An interval of 10ms will give us 10ms * WHEEL_SIZE^WHEEL_BUCKETS
* for the largest timeout possible, or about 497 days.
*
* For a lower bound, we want a reasonable limit on local IO, 10ms
* seems short enough
*
* A shorter interval also has CPU implications, less than 1ms might
* start showing up in cpu perf. Also, it might not be possible to set
* tick interval less than 10ms on older kernels.
*/
/*
* For high res timers:
* An interval of 200usec will give us 200usec * WHEEL_SIZE^WHEEL_BUCKETS
* for the largest timeout possible, or about 9 days.
*/
template <class Duration>
int HHWheelTimerBase<Duration>::DEFAULT_TICK_INTERVAL =
detail::HHWheelTimerDurationConst<Duration>::DEFAULT_TICK_INTERVAL;
template <class Duration>
HHWheelTimerBase<Duration>::Callback::Callback() = default;
template <class Duration>
HHWheelTimerBase<Duration>::Callback::~Callback() {
if (isScheduled()) {
cancelTimeout();
}
}
template <class Duration>
void HHWheelTimerBase<Duration>::Callback::setScheduled(
HHWheelTimerBase* wheel,
std::chrono::steady_clock::time_point deadline) {
assert(wheel_ == nullptr);
assert(expiration_ == decltype(expiration_){});
wheel_ = wheel;
expiration_ = deadline;
}
template <class Duration>
void HHWheelTimerBase<Duration>::Callback::cancelTimeoutImpl() {
if (--wheel_->count_ <= 0) {
assert(wheel_->count_ == 0);
wheel_->AsyncTimeout::cancelTimeout();
}
unlink();
if ((-1 != bucket_) && (wheel_->buckets_[0][bucket_].empty())) {
auto bi = makeBitIterator(wheel_->bitmap_.begin());
*(bi + bucket_) = false;
}
wheel_ = nullptr;
expiration_ = {};
}
template <class Duration>
HHWheelTimerBase<Duration>::HHWheelTimerBase(
folly::TimeoutManager* timeoutMananger,
Duration intervalDuration,
AsyncTimeout::InternalEnum internal,
Duration defaultTimeoutDuration)
: AsyncTimeout(timeoutMananger, internal),
interval_(intervalDuration),
defaultTimeout_(defaultTimeoutDuration),
expireTick_(1),
count_(0),
startTime_(getCurTime()),
processingCallbacksGuard_(nullptr) {
bitmap_.fill(0);
}
template <class Duration>
HHWheelTimerBase<Duration>::~HHWheelTimerBase() {
// Ensure this gets done, but right before destruction finishes.
auto destructionPublisherGuard = folly::makeGuard([&] {
// Inform the subscriber that this instance is doomed.
if (processingCallbacksGuard_) {
*processingCallbacksGuard_ = true;
}
});
cancelAll();
}
template <class Duration>
void HHWheelTimerBase<Duration>::scheduleTimeoutImpl(
Callback* callback,
int64_t dueTick,
int64_t nextTickToProcess,
int64_t nextTick) {
int64_t diff = dueTick - nextTickToProcess;
CallbackList* list;
auto bi = makeBitIterator(bitmap_.begin());
if (diff < 0) {
list = &buckets_[0][nextTick & WHEEL_MASK];
*(bi + (nextTick & WHEEL_MASK)) = true;
callback->bucket_ = nextTick & WHEEL_MASK;
} else if (diff < WHEEL_SIZE) {
list = &buckets_[0][dueTick & WHEEL_MASK];
*(bi + (dueTick & WHEEL_MASK)) = true;
callback->bucket_ = dueTick & WHEEL_MASK;
} else if (diff < 1 << (2 * WHEEL_BITS)) {
list = &buckets_[1][(dueTick >> WHEEL_BITS) & WHEEL_MASK];
} else if (diff < 1 << (3 * WHEEL_BITS)) {
list = &buckets_[2][(dueTick >> 2 * WHEEL_BITS) & WHEEL_MASK];
} else {
/* in largest slot */
if (diff > LARGEST_SLOT) {
diff = LARGEST_SLOT;
dueTick = diff + nextTickToProcess;
}
list = &buckets_[3][(dueTick >> 3 * WHEEL_BITS) & WHEEL_MASK];
}
list->push_back(*callback);
}
template <class Duration>
void HHWheelTimerBase<Duration>::scheduleTimeout(
Callback* callback,
Duration timeout) {
// Make sure that the timeout is not negative.
timeout = std::max(timeout, Duration::zero());
// Cancel the callback if it happens to be scheduled already.
callback->cancelTimeout();
callback->requestContext_ = RequestContext::saveContext();
count_++;
auto now = getCurTime();
auto nextTick = calcNextTick(now);
callback->setScheduled(this, now + timeout);
// There are three possible scenarios:
// - we are currently inside of HHWheelTimerBase<Duration>::timeoutExpired.
// In this case,
// we need to use its last tick as a base for computations
// - HHWheelTimerBase tick timeout is already scheduled. In this case,
// we need to use its scheduled tick as a base.
// - none of the above are true. In this case, it's safe to use the nextTick
// as a base.
int64_t baseTick = nextTick;
if (processingCallbacksGuard_ || isScheduled()) {
baseTick = std::min(expireTick_, nextTick);
}
int64_t ticks = timeToWheelTicks(timeout);
int64_t due = ticks + nextTick;
scheduleTimeoutImpl(callback, due, baseTick, nextTick);
/* If we're calling callbacks, timer will be reset after all
* callbacks are called.
*/
if (!processingCallbacksGuard_) {
// Check if we need to reschedule the timer.
// If the wheel timeout is already scheduled, then we need to reschedule
// only if our due is earlier than the current scheduled one.
// If it's not scheduled, we need to schedule it either for the first tick
// of next wheel epoch or our due tick, whichever is earlier.
if (!isScheduled() && !inSameEpoch(nextTick - 1, due)) {
scheduleNextTimeout(nextTick, WHEEL_SIZE - ((nextTick - 1) & WHEEL_MASK));
} else if (!isScheduled() || due < expireTick_) {
scheduleNextTimeout(nextTick, ticks + 1);
}
}
}
template <class Duration>
void HHWheelTimerBase<Duration>::scheduleTimeout(Callback* callback) {
CHECK(Duration(-1) != defaultTimeout_)
<< "Default timeout was not initialized";
scheduleTimeout(callback, defaultTimeout_);
}
template <class Duration>
bool HHWheelTimerBase<Duration>::cascadeTimers(
int bucket,
int tick,
const std::chrono::steady_clock::time_point curTime) {
CallbackList cbs;
cbs.swap(buckets_[bucket][tick]);
auto nextTick = calcNextTick(curTime);
while (!cbs.empty()) {
auto* cb = &cbs.front();
cbs.pop_front();
scheduleTimeoutImpl(
cb,
nextTick + timeToWheelTicks(cb->getTimeRemaining(curTime)),
expireTick_,
nextTick);
}
// If tick is zero, timeoutExpired will cascade the next bucket.
return tick == 0;
}
template <class Duration>
void HHWheelTimerBase<Duration>::scheduleTimeoutInternal(Duration timeout) {
this->AsyncTimeout::scheduleTimeout(timeout);
}
template <class Duration>
void HHWheelTimerBase<Duration>::timeoutExpired() noexcept {
auto curTime = getCurTime();
auto nextTick = calcNextTick(curTime);
// If the last smart pointer for "this" is reset inside the callback's
// timeoutExpired(), then the guard will detect that it is time to bail from
// this method.
auto isDestroyed = false;
// If scheduleTimeout is called from a callback in this function, it may
// cause inconsistencies in the state of this object. As such, we need
// to treat these calls slightly differently.
CHECK(!processingCallbacksGuard_);
processingCallbacksGuard_ = &isDestroyed;
auto reEntryGuard = folly::makeGuard([&] {
if (!isDestroyed) {
processingCallbacksGuard_ = nullptr;
}
});
// timeoutExpired() can only be invoked directly from the event base loop.
// It should never be invoked recursively.
//
while (expireTick_ < nextTick) {
int idx = expireTick_ & WHEEL_MASK;
if (idx == 0) {
// Cascade timers
if (cascadeTimers(1, (expireTick_ >> WHEEL_BITS) & WHEEL_MASK, curTime) &&
cascadeTimers(
2, (expireTick_ >> (2 * WHEEL_BITS)) & WHEEL_MASK, curTime)) {
cascadeTimers(
3, (expireTick_ >> (3 * WHEEL_BITS)) & WHEEL_MASK, curTime);
}
}
auto bi = makeBitIterator(bitmap_.begin());
*(bi + idx) = false;
expireTick_++;
CallbackList* cbs = &buckets_[0][idx];
while (!cbs->empty()) {
auto* cb = &cbs->front();
cbs->pop_front();
timeoutsToRunNow_.push_back(*cb);
}
}
while (!timeoutsToRunNow_.empty()) {
auto* cb = &timeoutsToRunNow_.front();
timeoutsToRunNow_.pop_front();
count_--;
cb->wheel_ = nullptr;
cb->expiration_ = {};
RequestContextScopeGuard rctx(cb->requestContext_);
cb->timeoutExpired();
if (isDestroyed) {
// The HHWheelTimerBase itself has been destroyed. The other callbacks
// will have been cancelled from the destructor. Bail before causing
// damage.
return;
}
}
// We don't need to schedule a new timeout if there're nothing in the wheel.
if (count_ > 0) {
scheduleNextTimeout(expireTick_);
}
}
template <class Duration>
size_t HHWheelTimerBase<Duration>::cancelAll() {
size_t count = 0;
if (count_ != 0) {
const std::size_t numElements = WHEEL_BUCKETS * WHEEL_SIZE;
auto maxBuckets = std::min(numElements, count_);
auto buckets = std::make_unique<CallbackList[]>(maxBuckets);
size_t countBuckets = 0;
for (auto& tick : buckets_) {
for (auto& bucket : tick) {
if (bucket.empty()) {
continue;
}
count += bucket.size();
std::swap(bucket, buckets[countBuckets++]);
if (count >= count_) {
break;
}
}
}
for (size_t i = 0; i < countBuckets; ++i) {
cancelTimeoutsFromList(buckets[i]);
}
// Swap the list to prevent potential recursion if cancelAll is called by
// one of the callbacks.
CallbackList timeoutsToRunNow;
timeoutsToRunNow.swap(timeoutsToRunNow_);
count += cancelTimeoutsFromList(timeoutsToRunNow);
}
return count;
}
template <class Duration>
void HHWheelTimerBase<Duration>::scheduleNextTimeout(int64_t nextTick) {
int64_t tick = 1;
if (nextTick & WHEEL_MASK) {
auto bi = makeBitIterator(bitmap_.begin());
auto bi_end = makeBitIterator(bitmap_.end());
auto it = folly::findFirstSet(bi + (nextTick & WHEEL_MASK), bi_end);
if (it == bi_end) {
tick = WHEEL_SIZE - ((nextTick - 1) & WHEEL_MASK);
} else {
tick = std::distance(bi + (nextTick & WHEEL_MASK), it) + 1;
}
}
scheduleNextTimeout(nextTick, tick);
}
template <class Duration>
void HHWheelTimerBase<Duration>::scheduleNextTimeout(
int64_t nextTick,
int64_t ticks) {
scheduleTimeoutInternal(interval_ * ticks);
expireTick_ = ticks + nextTick - 1;
}
template <class Duration>
size_t HHWheelTimerBase<Duration>::cancelTimeoutsFromList(
CallbackList& timeouts) {
size_t count = 0;
while (!timeouts.empty()) {
++count;
auto& cb = timeouts.front();
cb.cancelTimeout();
cb.callbackCanceled();
}
return count;
}
template <class Duration>
int64_t HHWheelTimerBase<Duration>::calcNextTick() {
return calcNextTick(getCurTime());
}
template <class Duration>
int64_t HHWheelTimerBase<Duration>::calcNextTick(
std::chrono::steady_clock::time_point curTime) {
return (curTime - startTime_) / interval_;
}
// std::chrono::microseconds
template <>
void HHWheelTimerBase<std::chrono::microseconds>::scheduleTimeoutInternal(
std::chrono::microseconds timeout) {
this->AsyncTimeout::scheduleTimeoutHighRes(timeout);
}
// std::chrono::milliseconds
template class HHWheelTimerBase<std::chrono::milliseconds>;
// std::chrono::microseconds
template class HHWheelTimerBase<std::chrono::microseconds>;
} // namespace folly