8201851b27 | ||
---|---|---|
example | ||
lib | ||
test | ||
.gitignore | ||
.travis.yml | ||
LICENSE | ||
Makefile | ||
NOTICE.md | ||
README.md | ||
docs.json | ||
index.js | ||
package.json |
README.md
loopback-connector-mysql
loopback-connector-mysql
is the MySQL connector module for loopback-datasource-juggler.
Installation
npm install loopback-connector-mysql --save
Usage
To use it you need loopback-datasource-juggler
.
-
Setup dependencies in
package.json
:{ ... "dependencies": { "loopback-datasource-juggler": "latest", "loopback-connector-mysql": "latest" }, ... }
-
Use:
var DataSource = require('loopback-datasource-juggler').DataSource; var dataSource = new DataSource('mysql', { host: 'localhost', port: 3306, database: 'mydb', username: 'myuser', password: 'mypass' });
You can optionally pass a few additional parameters supported by
node-mysql
, most particularlypassword
andcollation
.Collation
currently defaults toutf8_general_ci
. Thecollation
value will also be used to derive the connection charset.
Data type mappings
loopback-connector-mysql
uses the following rules to map between JSON types and MySQL data types.
JSON to MySQL types
- String/JSON: VARCHAR
- Text: TEXT
- Number: INT
- Date: DATETIME
- BOOLEAN: TINYINT(1)
- Point/GeoPoint: POINT
- Enum: ENUM
MySQL to JSON types
- CHAR: String
- CHAR(1): Boolean
- VARCHAR/TINYTEXT/MEDIUMTEXT/LONGTEXT/TEXT/ENUM/SET: String
- TINYBLOB/MEDIUMBLOB/LONGBLOB/BLOB/BINARY/VARBINARY/BIT: Binary
- TINYINT/SMALLINT/INT/MEDIUMINT/YEAR/FLOAT/DOUBLE/NUMERIC/DECIMAL: Number
- DATE/TIMESTAMP/DATETIME: Date
Using the dataType
field/column option with MySQL
loopback-connector-mysql
allows mapping of LoopBack model properties to MYSQL columns using the 'mysql' property of the
property definition. For example,
"locationId":{
"type":"String",
"required":true,
"length":20,
"mysql":
{
"columnName":"LOCATION_ID",
"dataType":"VARCHAR2",
"dataLength":20,
"nullable":"N"
}
}
loopback-connector-mysql
also supports using the dataType
column/property attribute to specify what MySQL column
type is used for many loopback-datasource-juggler types.
The following type-dataType combinations are supported:
-
Number
-
integer
- tinyint
- smallint
- mediumint
- int
- bigint
Use the
limit
option to alter the display width.Example:
{ count : { type: Number, dataType: 'smallInt' }}
-
floating point types
- float
- double
Use the
precision
andscale
options to specify custom precision. Default is (16,8).Example:
{ average : { type: Number, dataType: 'float', precision: 20, scale: 4 }}
-
fixed-point exact value types
- decimal
- numeric
Use the
precision
andscale
options to specify custom precision. Default is (9,2).These aren't likely to function as true fixed-point.
Example:
{ stdDev : { type: Number, dataType: 'decimal', precision: 12, scale: 8 }}
-
-
String / DataSource.Text / DataSource.JSON
- varchar
- char
- text
- mediumtext
- tinytext
- longtext
Example:
{ userName : { type: String, dataType: 'char', limit: 24 }}
Example:
{ biography : { type: String, dataType: 'longtext' }}
-
Date
- datetime
- timestamp
Example:
{ startTime : { type: Date, dataType: 'timestamp' }}
- Enum Enums are special. Create an Enum using Enum factory:
var MOOD = dataSource.EnumFactory('glad', 'sad', 'mad');
MOOD.SAD; // 'sad'
MOOD(2); // 'sad'
MOOD('SAD'); // 'sad'
MOOD('sad'); // 'sad'
{ mood: { type: MOOD }}
{ choice: { type: dataSource.EnumFactory('yes', 'no', 'maybe'), null: false }}
Discovering Models
MySQL data sources allow you to discover model definition information from existing mysql databases. See the following APIs:
Asynchronous APIs for discovery
-
MySQL.prototype.discoverModelDefinitions = function (options, cb)
- options:
- all: {Boolean} To include tables/views from all schemas/owners
- owner/schema: {String} The schema/owner name
- views: {Boolean} To include views
- cb:
-
Get a list of table/view names, for example:
{type: 'table', name: 'INVENTORY', owner: 'STRONGLOOP' } {type: 'table', name: 'LOCATION', owner: 'STRONGLOOP' } {type: 'view', name: 'INVENTORY_VIEW', owner: 'STRONGLOOP' }
-
- options:
-
MySQL.prototype.discoverModelProperties = function (table, options, cb)
- table: {String} The name of a table or view
- options:
- owner/schema: {String} The schema/owner name
- cb:
-
Get a list of model property definitions, for example:
{ owner: 'STRONGLOOP', tableName: 'PRODUCT', columnName: 'ID', dataType: 'VARCHAR2', dataLength: 20, nullable: 'N', type: 'String' } { owner: 'STRONGLOOP', tableName: 'PRODUCT', columnName: 'NAME', dataType: 'VARCHAR2', dataLength: 64, nullable: 'Y', type: 'String' }
-
-
MySQL.prototype.discoverPrimaryKeys= function(table, options, cb)
- table: {String} The name of a table or view
- options:
- owner/schema: {String} The schema/owner name
- cb:
-
Get a list of primary key definitions, for example:
{ owner: 'STRONGLOOP', tableName: 'INVENTORY', columnName: 'PRODUCT_ID', keySeq: 1, pkName: 'ID_PK' } { owner: 'STRONGLOOP', tableName: 'INVENTORY', columnName: 'LOCATION_ID', keySeq: 2, pkName: 'ID_PK' }
-
-
MySQL.prototype.discoverForeignKeys= function(table, options, cb)
- table: {String} The name of a table or view
- options:
- owner/schema: {String} The schema/owner name
- cb:
-
Get a list of foreign key definitions, for example:
{ fkOwner: 'STRONGLOOP', fkName: 'PRODUCT_FK', fkTableName: 'INVENTORY', fkColumnName: 'PRODUCT_ID', keySeq: 1, pkOwner: 'STRONGLOOP', pkName: 'PRODUCT_PK', pkTableName: 'PRODUCT', pkColumnName: 'ID' }
-
-
MySQL.prototype.discoverExportedForeignKeys= function(table, options, cb)
- table: {String} The name of a table or view
- options:
- owner/schema: {String} The schema/owner name
- cb:
-
Get a list of foreign key definitions that reference the primary key of the given table, for example:
{ fkName: 'PRODUCT_FK', fkOwner: 'STRONGLOOP', fkTableName: 'INVENTORY', fkColumnName: 'PRODUCT_ID', keySeq: 1, pkName: 'PRODUCT_PK', pkOwner: 'STRONGLOOP', pkTableName: 'PRODUCT', pkColumnName: 'ID' }
-
Discover/build/try the models
Build a LDL schema by discovery
Data sources backed by the MySQL connector can discover LDL models from the database using the discoverSchema
API. For
example,
dataSource.discoverSchema('INVENTORY', {owner: 'STRONGLOOP'}, function (err, schema) {
...
}
Here is the sample result. Please note there are 'mysql' properties in addition to the regular LDL model options and properties. The 'mysql' objects contain the MySQL specific mappings.
{
"name":"Inventory",
"options":{
"idInjection":false,
"mysql":{
"schema":"STRONGLOOP",
"table":"INVENTORY"
}
},
"properties":{
"productId":{
"type":"String",
"required":false,
"length":60,
"precision":null,
"scale":null,
"id":1,
"mysql":{
"columnName":"PRODUCT_ID",
"dataType":"varchar",
"dataLength":60,
"dataPrecision":null,
"dataScale":null,
"nullable":"NO"
}
},
"locationId":{
"type":"String",
"required":false,
"length":60,
"precision":null,
"scale":null,
"id":2,
"mysql":{
"columnName":"LOCATION_ID",
"dataType":"varchar",
"dataLength":60,
"dataPrecision":null,
"dataScale":null,
"nullable":"NO"
}
},
"available":{
"type":"Number",
"required":false,
"length":null,
"precision":10,
"scale":0,
"mysql":{
"columnName":"AVAILABLE",
"dataType":"int",
"dataLength":null,
"dataPrecision":10,
"dataScale":0,
"nullable":"YES"
}
},
"total":{
"type":"Number",
"required":false,
"length":null,
"precision":10,
"scale":0,
"mysql":{
"columnName":"TOTAL",
"dataType":"int",
"dataLength":null,
"dataPrecision":10,
"dataScale":0,
"nullable":"YES"
}
}
}
}
We can also discover and build model classes in one shot. The following example uses discoverAndBuildModels
to discover,
build and try the models:
dataSource.discoverAndBuildModels('INVENTORY', { owner: 'STRONGLOOP', visited: {}, associations: true},
function (err, models) {
// Show records from the models
for(var m in models) {
models[m].all(show);
};
// Find one record for inventory
models.Inventory.findOne({}, function(err, inv) {
console.log("\nInventory: ", inv);
// Follow the foreign key to navigate to the product
inv.product(function(err, prod) {
console.log("\nProduct: ", prod);
console.log("\n ------------- ");
});
});
}