289 lines
7.2 KiB
JavaScript
289 lines
7.2 KiB
JavaScript
// Copyright IBM Corp. 2013,2016. All Rights Reserved.
|
||
// Node module: loopback-datasource-juggler
|
||
// This file is licensed under the MIT License.
|
||
// License text available at https://opensource.org/licenses/MIT
|
||
|
||
'use strict';
|
||
|
||
var assert = require('assert');
|
||
|
||
/*!
|
||
* Get a near filter from a given where object. For connector use only.
|
||
*/
|
||
|
||
exports.nearFilter = function nearFilter(where) {
|
||
var result = false;
|
||
|
||
if (where && typeof where === 'object') {
|
||
Object.keys(where).forEach(function(key) {
|
||
var ex = where[key];
|
||
|
||
if (ex && ex.near) {
|
||
result = {
|
||
near: ex.near,
|
||
maxDistance: ex.maxDistance,
|
||
minDistance: ex.minDistance,
|
||
unit: ex.unit,
|
||
key: key,
|
||
};
|
||
}
|
||
});
|
||
}
|
||
|
||
return result;
|
||
};
|
||
|
||
/*!
|
||
* Filter a set of objects using the given `nearFilter`.
|
||
*/
|
||
|
||
exports.filter = function(arr, filter) {
|
||
var origin = filter.near;
|
||
var max = filter.maxDistance > 0 ? filter.maxDistance : false;
|
||
var min = filter.minDistance > 0 ? filter.minDistance : false;
|
||
var unit = filter.unit;
|
||
var key = filter.key;
|
||
|
||
// create distance index
|
||
var distances = {};
|
||
var result = [];
|
||
|
||
arr.forEach(function(obj) {
|
||
var loc = obj[key];
|
||
|
||
// filter out objects without locations
|
||
if (!loc) return;
|
||
|
||
if (!(loc instanceof GeoPoint)) {
|
||
loc = GeoPoint(loc);
|
||
}
|
||
|
||
if (typeof loc.lat !== 'number') return;
|
||
if (typeof loc.lng !== 'number') return;
|
||
|
||
var d = GeoPoint.distanceBetween(origin, loc, {type: unit});
|
||
|
||
if (min && d < min) {
|
||
return;
|
||
}
|
||
if (max && d > max) {
|
||
// dont add
|
||
} else {
|
||
distances[obj.id] = d;
|
||
result.push(obj);
|
||
}
|
||
});
|
||
|
||
return result.sort(function(objA, objB) {
|
||
var a = objA[key];
|
||
var b = objB[key];
|
||
|
||
if (a && b) {
|
||
var da = distances[objA.id];
|
||
var db = distances[objB.id];
|
||
|
||
if (db === da) return 0;
|
||
return da > db ? 1 : -1;
|
||
} else {
|
||
return 0;
|
||
}
|
||
});
|
||
};
|
||
|
||
exports.GeoPoint = GeoPoint;
|
||
|
||
/**
|
||
* The GeoPoint object represents a physical location.
|
||
*
|
||
* For example:
|
||
*
|
||
* ```js
|
||
* var loopback = require(‘loopback’);
|
||
* var here = new loopback.GeoPoint({lat: 10.32424, lng: 5.84978});
|
||
* ```
|
||
*
|
||
* Embed a latitude / longitude point in a model.
|
||
*
|
||
* ```js
|
||
* var CoffeeShop = loopback.createModel('coffee-shop', {
|
||
* location: 'GeoPoint'
|
||
* });
|
||
* ```
|
||
*
|
||
* You can query LoopBack models with a GeoPoint property and an attached data source using geo-spatial filters and
|
||
* sorting. For example, the following code finds the three nearest coffee shops.
|
||
*
|
||
* ```js
|
||
* CoffeeShop.attachTo(oracle);
|
||
* var here = new GeoPoint({lat: 10.32424, lng: 5.84978});
|
||
* CoffeeShop.find( {where: {location: {near: here}}, limit:3}, function(err, nearbyShops) {
|
||
* console.info(nearbyShops); // [CoffeeShop, ...]
|
||
* });
|
||
* ```
|
||
* @class GeoPoint
|
||
* @property {Number} lat The latitude in degrees.
|
||
* @property {Number} lng The longitude in degrees.
|
||
*
|
||
* @options {Object} Options Object with two Number properties: lat and long.
|
||
* @property {Number} lat The latitude point in degrees. Range: -90 to 90.
|
||
* @property {Number} lng The longitude point in degrees. Range: -180 to 180.
|
||
*
|
||
* @options {Array} Options Array with two Number entries: [lat,long].
|
||
* @property {Number} lat The latitude point in degrees. Range: -90 to 90.
|
||
* @property {Number} lng The longitude point in degrees. Range: -180 to 180.
|
||
*/
|
||
|
||
function GeoPoint(data) {
|
||
if (!(this instanceof GeoPoint)) {
|
||
return new GeoPoint(data);
|
||
}
|
||
|
||
if (arguments.length === 2) {
|
||
data = {
|
||
lat: arguments[0],
|
||
lng: arguments[1],
|
||
};
|
||
}
|
||
|
||
assert(Array.isArray(data) || typeof data === 'object' || typeof data === 'string',
|
||
'must provide valid geo-coordinates array [lat, lng] or object or a "lat, lng" string');
|
||
|
||
if (typeof data === 'string') {
|
||
data = data.split(/,\s*/);
|
||
assert(data.length === 2, 'must provide a string "lat,lng" creating a GeoPoint with a string');
|
||
}
|
||
if (Array.isArray(data)) {
|
||
data = {
|
||
lat: Number(data[0]),
|
||
lng: Number(data[1]),
|
||
};
|
||
} else {
|
||
data.lng = Number(data.lng);
|
||
data.lat = Number(data.lat);
|
||
}
|
||
|
||
assert(typeof data === 'object', 'must provide a lat and lng object when creating a GeoPoint');
|
||
assert(typeof data.lat === 'number' && !isNaN(data.lat), 'lat must be a number when creating a GeoPoint');
|
||
assert(typeof data.lng === 'number' && !isNaN(data.lng), 'lng must be a number when creating a GeoPoint');
|
||
assert(data.lng <= 180, 'lng must be <= 180');
|
||
assert(data.lng >= -180, 'lng must be >= -180');
|
||
assert(data.lat <= 90, 'lat must be <= 90');
|
||
assert(data.lat >= -90, 'lat must be >= -90');
|
||
|
||
this.lat = data.lat;
|
||
this.lng = data.lng;
|
||
}
|
||
|
||
/**
|
||
* Determine the spherical distance between two GeoPoints.
|
||
*
|
||
* @param {GeoPoint} pointA Point A
|
||
* @param {GeoPoint} pointB Point B
|
||
* @options {Object} options Options object with one key, 'type'. See below.
|
||
* @property {String} type Unit of measurement, one of:
|
||
*
|
||
* - `miles` (default)
|
||
* - `radians`
|
||
* - `kilometers`
|
||
* - `meters`
|
||
* - `miles`
|
||
* - `feet`
|
||
* - `degrees`
|
||
*/
|
||
|
||
GeoPoint.distanceBetween = function distanceBetween(a, b, options) {
|
||
if (!(a instanceof GeoPoint)) {
|
||
a = GeoPoint(a);
|
||
}
|
||
if (!(b instanceof GeoPoint)) {
|
||
b = GeoPoint(b);
|
||
}
|
||
|
||
var x1 = a.lat;
|
||
var y1 = a.lng;
|
||
|
||
var x2 = b.lat;
|
||
var y2 = b.lng;
|
||
|
||
return geoDistance(x1, y1, x2, y2, options);
|
||
};
|
||
|
||
/**
|
||
* Determine the spherical distance to the given point.
|
||
* Example:
|
||
* ```js
|
||
* var loopback = require(‘loopback’);
|
||
*
|
||
* var here = new loopback.GeoPoint({lat: 10, lng: 10});
|
||
* var there = new loopback.GeoPoint({lat: 5, lng: 5});
|
||
*
|
||
* loopback.GeoPoint.distanceBetween(here, there, {type: 'miles'}) // 438
|
||
* ```
|
||
* @param {Object} point GeoPoint object to which to measure distance.
|
||
* @options {Object} options Options object with one key, 'type'. See below.
|
||
* @property {String} type Unit of measurement, one of:
|
||
*
|
||
* - `miles` (default)
|
||
* - `radians`
|
||
* - `kilometers`
|
||
* - `meters`
|
||
* - `miles`
|
||
* - `feet`
|
||
* - `degrees`
|
||
*/
|
||
|
||
GeoPoint.prototype.distanceTo = function(point, options) {
|
||
return GeoPoint.distanceBetween(this, point, options);
|
||
};
|
||
|
||
/**
|
||
* Simple serialization.
|
||
*/
|
||
|
||
GeoPoint.prototype.toString = function() {
|
||
return this.lat + ',' + this.lng;
|
||
};
|
||
|
||
/**
|
||
* @property {Number} DEG2RAD - Factor to convert degrees to radians.
|
||
* @property {Number} RAD2DEG - Factor to convert radians to degrees.
|
||
* @property {Object} EARTH_RADIUS - Radius of the earth.
|
||
*/
|
||
|
||
// factor to convert degrees to radians
|
||
var DEG2RAD = 0.01745329252;
|
||
|
||
// factor to convert radians degrees to degrees
|
||
var RAD2DEG = 57.29577951308;
|
||
|
||
// radius of the earth
|
||
var EARTH_RADIUS = {
|
||
kilometers: 6370.99056,
|
||
meters: 6370990.56,
|
||
miles: 3958.75,
|
||
feet: 20902200,
|
||
radians: 1,
|
||
degrees: RAD2DEG,
|
||
};
|
||
|
||
function geoDistance(x1, y1, x2, y2, options) {
|
||
var type = (options && options.type) || 'miles';
|
||
|
||
// Convert to radians
|
||
x1 = x1 * DEG2RAD;
|
||
y1 = y1 * DEG2RAD;
|
||
x2 = x2 * DEG2RAD;
|
||
y2 = y2 * DEG2RAD;
|
||
|
||
// use the haversine formula to calculate distance for any 2 points on a sphere.
|
||
// ref http://en.wikipedia.org/wiki/Haversine_formula
|
||
var haversine = function(a) {
|
||
return Math.pow(Math.sin(a / 2.0), 2);
|
||
};
|
||
|
||
var f = Math.sqrt(haversine(x2 - x1) + Math.cos(x2) * Math.cos(x1) * haversine(y2 - y1));
|
||
|
||
return 2 * Math.asin(f) * EARTH_RADIUS[type];
|
||
}
|
||
|