verdnatura-chat/ios/Pods/boost-for-react-native/boost/math/distributions/hyperexponential.hpp

635 lines
22 KiB
C++
Raw Normal View History

// Copyright 2014 Marco Guazzone (marco.guazzone@gmail.com)
//
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This module implements the Hyper-Exponential distribution.
//
// References:
// - "Queueing Theory in Manufacturing Systems Analysis and Design" by H.T. Papadopolous, C. Heavey and J. Browne (Chapman & Hall/CRC, 1993)
// - http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html
// - http://en.wikipedia.org/wiki/Hyperexponential_distribution
//
#ifndef BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
#define BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
#include <boost/config.hpp>
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/math/distributions/exponential.hpp>
#include <boost/math/policies/policy.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/range/size.hpp>
#include <boost/type_traits/has_pre_increment.hpp>
#include <cstddef>
#include <iterator>
#include <limits>
#include <numeric>
#include <utility>
#include <vector>
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
# include <initializer_list>
#endif
#ifdef _MSC_VER
# pragma warning (push)
# pragma warning(disable:4127) // conditional expression is constant
# pragma warning(disable:4389) // '==' : signed/unsigned mismatch in test_tools
#endif // _MSC_VER
namespace boost { namespace math {
namespace detail {
template <typename Dist>
typename Dist::value_type generic_quantile(const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, bool comp, const char* function);
} // Namespace detail
template <typename RealT, typename PolicyT>
class hyperexponential_distribution;
namespace /*<unnamed>*/ { namespace hyperexp_detail {
template <typename T>
void normalize(std::vector<T>& v)
{
if(!v.size())
return; // Our error handlers will get this later
const T sum = std::accumulate(v.begin(), v.end(), static_cast<T>(0));
T final_sum = 0;
const typename std::vector<T>::iterator end = --v.end();
for (typename std::vector<T>::iterator it = v.begin();
it != end;
++it)
{
*it /= sum;
final_sum += *it;
}
*end = 1 - final_sum; // avoids round off errors, ensures the probs really do sum to 1.
}
template <typename RealT, typename PolicyT>
bool check_probabilities(char const* function, std::vector<RealT> const& probabilities, RealT* presult, PolicyT const& pol)
{
BOOST_MATH_STD_USING
const std::size_t n = probabilities.size();
RealT sum = 0;
for (std::size_t i = 0; i < n; ++i)
{
if (probabilities[i] < 0
|| probabilities[i] > 1
|| !(boost::math::isfinite)(probabilities[i]))
{
*presult = policies::raise_domain_error<RealT>(function,
"The elements of parameter \"probabilities\" must be >= 0 and <= 1, but at least one of them was: %1%.",
probabilities[i],
pol);
return false;
}
sum += probabilities[i];
}
//
// We try to keep phase probabilities correctly normalized in the distribution constructors,
// however in practice we have to allow for a very slight divergence from a sum of exactly 1:
//
if (fabs(sum - 1) > tools::epsilon<RealT>() * 2)
{
*presult = policies::raise_domain_error<RealT>(function,
"The elements of parameter \"probabilities\" must sum to 1, but their sum is: %1%.",
sum,
pol);
return false;
}
return true;
}
template <typename RealT, typename PolicyT>
bool check_rates(char const* function, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
{
const std::size_t n = rates.size();
for (std::size_t i = 0; i < n; ++i)
{
if (rates[i] <= 0
|| !(boost::math::isfinite)(rates[i]))
{
*presult = policies::raise_domain_error<RealT>(function,
"The elements of parameter \"rates\" must be > 0, but at least one of them is: %1%.",
rates[i],
pol);
return false;
}
}
return true;
}
template <typename RealT, typename PolicyT>
bool check_dist(char const* function, std::vector<RealT> const& probabilities, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
{
BOOST_MATH_STD_USING
if (probabilities.size() != rates.size())
{
*presult = policies::raise_domain_error<RealT>(function,
"The parameters \"probabilities\" and \"rates\" must have the same length, but their size differ by: %1%.",
fabs(static_cast<RealT>(probabilities.size())-static_cast<RealT>(rates.size())),
pol);
return false;
}
return check_probabilities(function, probabilities, presult, pol)
&& check_rates(function, rates, presult, pol);
}
template <typename RealT, typename PolicyT>
bool check_x(char const* function, RealT x, RealT* presult, PolicyT const& pol)
{
if (x < 0 || (boost::math::isnan)(x))
{
*presult = policies::raise_domain_error<RealT>(function, "The random variable must be >= 0, but is: %1%.", x, pol);
return false;
}
return true;
}
template <typename RealT, typename PolicyT>
bool check_probability(char const* function, RealT p, RealT* presult, PolicyT const& pol)
{
if (p < 0 || p > 1 || (boost::math::isnan)(p))
{
*presult = policies::raise_domain_error<RealT>(function, "The probability be >= 0 and <= 1, but is: %1%.", p, pol);
return false;
}
return true;
}
template <typename RealT, typename PolicyT>
RealT quantile_impl(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p, bool comp)
{
// Don't have a closed form so try to numerically solve the inverse CDF...
typedef typename policies::evaluation<RealT, PolicyT>::type value_type;
typedef typename policies::normalise<PolicyT,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = comp ? "boost::math::quantile(const boost::math::complemented2_type<boost::math::hyperexponential_distribution<%1%>, %1%>&)"
: "boost::math::quantile(const boost::math::hyperexponential_distribution<%1%>&, %1%)";
RealT result = 0;
if (!check_probability(function, p, &result, PolicyT()))
{
return result;
}
const std::size_t n = dist.num_phases();
const std::vector<RealT> probs = dist.probabilities();
const std::vector<RealT> rates = dist.rates();
// A possible (but inaccurate) approximation is given below, where the
// quantile is given by the weighted sum of exponential quantiles:
RealT guess = 0;
if (comp)
{
for (std::size_t i = 0; i < n; ++i)
{
const exponential_distribution<RealT,PolicyT> exp(rates[i]);
guess += probs[i]*quantile(complement(exp, p));
}
}
else
{
for (std::size_t i = 0; i < n; ++i)
{
const exponential_distribution<RealT,PolicyT> exp(rates[i]);
guess += probs[i]*quantile(exp, p);
}
}
// Fast return in case the Hyper-Exponential is essentially an Exponential
if (n == 1)
{
return guess;
}
value_type q;
q = detail::generic_quantile(hyperexponential_distribution<RealT,forwarding_policy>(probs, rates),
p,
guess,
comp,
function);
result = policies::checked_narrowing_cast<RealT,forwarding_policy>(q, function);
return result;
}
}} // Namespace <unnamed>::hyperexp_detail
template <typename RealT = double, typename PolicyT = policies::policy<> >
class hyperexponential_distribution
{
public: typedef RealT value_type;
public: typedef PolicyT policy_type;
public: hyperexponential_distribution()
: probs_(1, 1),
rates_(1, 1)
{
RealT err;
hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
probs_,
rates_,
&err,
PolicyT());
}
// Four arg constructor: no ambiguity here, the arguments must be two pairs of iterators:
public: template <typename ProbIterT, typename RateIterT>
hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last,
RateIterT rate_first, RateIterT rate_last)
: probs_(prob_first, prob_last),
rates_(rate_first, rate_last)
{
hyperexp_detail::normalize(probs_);
RealT err;
hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
probs_,
rates_,
&err,
PolicyT());
}
// Two arg constructor from 2 ranges, we SFINAE this out of existance if
// either argument type is incrementable as in that case the type is
// probably an iterator:
public: template <typename ProbRangeT, typename RateRangeT>
hyperexponential_distribution(ProbRangeT const& prob_range,
RateRangeT const& rate_range,
typename boost::disable_if_c<boost::has_pre_increment<ProbRangeT>::value || boost::has_pre_increment<RateRangeT>::value>::type* = 0)
: probs_(boost::begin(prob_range), boost::end(prob_range)),
rates_(boost::begin(rate_range), boost::end(rate_range))
{
hyperexp_detail::normalize(probs_);
RealT err;
hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
probs_,
rates_,
&err,
PolicyT());
}
// Two arg constructor for a pair of iterators: we SFINAE this out of
// existance if neither argument types are incrementable.
// Note that we allow different argument types here to allow for
// construction from an array plus a pointer into that array.
public: template <typename RateIterT, typename RateIterT2>
hyperexponential_distribution(RateIterT const& rate_first,
RateIterT2 const& rate_last,
typename boost::enable_if_c<boost::has_pre_increment<RateIterT>::value || boost::has_pre_increment<RateIterT2>::value>::type* = 0)
: probs_(std::distance(rate_first, rate_last), 1), // will be normalized below
rates_(rate_first, rate_last)
{
hyperexp_detail::normalize(probs_);
RealT err;
hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
probs_,
rates_,
&err,
PolicyT());
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
// Initializer list constructor: allows for construction from array literals:
public: hyperexponential_distribution(std::initializer_list<RealT> l1, std::initializer_list<RealT> l2)
: probs_(l1.begin(), l1.end()),
rates_(l2.begin(), l2.end())
{
hyperexp_detail::normalize(probs_);
RealT err;
hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
probs_,
rates_,
&err,
PolicyT());
}
public: hyperexponential_distribution(std::initializer_list<RealT> l1)
: probs_(l1.size(), 1),
rates_(l1.begin(), l1.end())
{
hyperexp_detail::normalize(probs_);
RealT err;
hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
probs_,
rates_,
&err,
PolicyT());
}
#endif // !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
// Single argument constructor: argument must be a range.
public: template <typename RateRangeT>
hyperexponential_distribution(RateRangeT const& rate_range)
: probs_(boost::size(rate_range), 1), // will be normalized below
rates_(boost::begin(rate_range), boost::end(rate_range))
{
hyperexp_detail::normalize(probs_);
RealT err;
hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
probs_,
rates_,
&err,
PolicyT());
}
public: std::vector<RealT> probabilities() const
{
return probs_;
}
public: std::vector<RealT> rates() const
{
return rates_;
}
public: std::size_t num_phases() const
{
return rates_.size();
}
private: std::vector<RealT> probs_;
private: std::vector<RealT> rates_;
}; // class hyperexponential_distribution
// Convenient type synonym for double.
typedef hyperexponential_distribution<double> hyperexponential;
// Range of permissible values for random variable x
template <typename RealT, typename PolicyT>
std::pair<RealT,RealT> range(hyperexponential_distribution<RealT,PolicyT> const&)
{
if (std::numeric_limits<RealT>::has_infinity)
{
return std::make_pair(static_cast<RealT>(0), std::numeric_limits<RealT>::infinity()); // 0 to +inf.
}
return std::make_pair(static_cast<RealT>(0), tools::max_value<RealT>()); // 0 to +<max value>
}
// Range of supported values for random variable x.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
template <typename RealT, typename PolicyT>
std::pair<RealT,RealT> support(hyperexponential_distribution<RealT,PolicyT> const&)
{
return std::make_pair(tools::min_value<RealT>(), tools::max_value<RealT>()); // <min value> to +<max value>.
}
template <typename RealT, typename PolicyT>
RealT pdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
{
BOOST_MATH_STD_USING
RealT result = 0;
if (!hyperexp_detail::check_x("boost::math::pdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
{
return result;
}
const std::size_t n = dist.num_phases();
const std::vector<RealT> probs = dist.probabilities();
const std::vector<RealT> rates = dist.rates();
for (std::size_t i = 0; i < n; ++i)
{
const exponential_distribution<RealT,PolicyT> exp(rates[i]);
result += probs[i]*pdf(exp, x);
//result += probs[i]*rates[i]*exp(-rates[i]*x);
}
return result;
}
template <typename RealT, typename PolicyT>
RealT cdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
{
RealT result = 0;
if (!hyperexp_detail::check_x("boost::math::cdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
{
return result;
}
const std::size_t n = dist.num_phases();
const std::vector<RealT> probs = dist.probabilities();
const std::vector<RealT> rates = dist.rates();
for (std::size_t i = 0; i < n; ++i)
{
const exponential_distribution<RealT,PolicyT> exp(rates[i]);
result += probs[i]*cdf(exp, x);
}
return result;
}
template <typename RealT, typename PolicyT>
RealT quantile(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p)
{
return hyperexp_detail::quantile_impl(dist, p , false);
}
template <typename RealT, typename PolicyT>
RealT cdf(complemented2_type<hyperexponential_distribution<RealT,PolicyT>, RealT> const& c)
{
RealT const& x = c.param;
hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
RealT result = 0;
if (!hyperexp_detail::check_x("boost::math::cdf(boost::math::complemented2_type<const boost::math::hyperexponential_distribution<%1%>&, %1%>)", x, &result, PolicyT()))
{
return result;
}
const std::size_t n = dist.num_phases();
const std::vector<RealT> probs = dist.probabilities();
const std::vector<RealT> rates = dist.rates();
for (std::size_t i = 0; i < n; ++i)
{
const exponential_distribution<RealT,PolicyT> exp(rates[i]);
result += probs[i]*cdf(complement(exp, x));
}
return result;
}
template <typename RealT, typename PolicyT>
RealT quantile(complemented2_type<hyperexponential_distribution<RealT, PolicyT>, RealT> const& c)
{
RealT const& p = c.param;
hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
return hyperexp_detail::quantile_impl(dist, p , true);
}
template <typename RealT, typename PolicyT>
RealT mean(hyperexponential_distribution<RealT, PolicyT> const& dist)
{
RealT result = 0;
const std::size_t n = dist.num_phases();
const std::vector<RealT> probs = dist.probabilities();
const std::vector<RealT> rates = dist.rates();
for (std::size_t i = 0; i < n; ++i)
{
const exponential_distribution<RealT,PolicyT> exp(rates[i]);
result += probs[i]*mean(exp);
}
return result;
}
template <typename RealT, typename PolicyT>
RealT variance(hyperexponential_distribution<RealT, PolicyT> const& dist)
{
RealT result = 0;
const std::size_t n = dist.num_phases();
const std::vector<RealT> probs = dist.probabilities();
const std::vector<RealT> rates = dist.rates();
for (std::size_t i = 0; i < n; ++i)
{
result += probs[i]/(rates[i]*rates[i]);
}
const RealT mean = boost::math::mean(dist);
result = 2*result-mean*mean;
return result;
}
template <typename RealT, typename PolicyT>
RealT skewness(hyperexponential_distribution<RealT,PolicyT> const& dist)
{
BOOST_MATH_STD_USING
const std::size_t n = dist.num_phases();
const std::vector<RealT> probs = dist.probabilities();
const std::vector<RealT> rates = dist.rates();
RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
for (std::size_t i = 0; i < n; ++i)
{
const RealT p = probs[i];
const RealT r = rates[i];
const RealT r2 = r*r;
const RealT r3 = r2*r;
s1 += p/r;
s2 += p/r2;
s3 += p/r3;
}
const RealT s1s1 = s1*s1;
const RealT num = (6*s3 - (3*(2*s2 - s1s1) + s1s1)*s1);
const RealT den = (2*s2 - s1s1);
return num / pow(den, static_cast<RealT>(1.5));
}
template <typename RealT, typename PolicyT>
RealT kurtosis(hyperexponential_distribution<RealT,PolicyT> const& dist)
{
const std::size_t n = dist.num_phases();
const std::vector<RealT> probs = dist.probabilities();
const std::vector<RealT> rates = dist.rates();
RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
RealT s4 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^4}
for (std::size_t i = 0; i < n; ++i)
{
const RealT p = probs[i];
const RealT r = rates[i];
const RealT r2 = r*r;
const RealT r3 = r2*r;
const RealT r4 = r3*r;
s1 += p/r;
s2 += p/r2;
s3 += p/r3;
s4 += p/r4;
}
const RealT s1s1 = s1*s1;
const RealT num = (24*s4 - 24*s3*s1 + 3*(2*(2*s2 - s1s1) + s1s1)*s1s1);
const RealT den = (2*s2 - s1s1);
return num/(den*den);
}
template <typename RealT, typename PolicyT>
RealT kurtosis_excess(hyperexponential_distribution<RealT,PolicyT> const& dist)
{
return kurtosis(dist) - 3;
}
template <typename RealT, typename PolicyT>
RealT mode(hyperexponential_distribution<RealT,PolicyT> const& /*dist*/)
{
return 0;
}
}} // namespace boost::math
#ifdef BOOST_MSVC
#pragma warning (pop)
#endif
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#include <boost/math/distributions/detail/generic_quantile.hpp>
#endif // BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL