verdnatura-chat/ios/Pods/Flipper-Folly/folly/Singleton.h

793 lines
26 KiB
C
Raw Normal View History

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// SingletonVault - a library to manage the creation and destruction
// of interdependent singletons.
//
// Recommended usage of this class: suppose you have a class
// called MyExpensiveService, and you only want to construct one (ie,
// it's a singleton), but you only want to construct it if it is used.
//
// In your .h file:
// class MyExpensiveService {
// // Caution - may return a null ptr during startup and shutdown.
// static std::shared_ptr<MyExpensiveService> getInstance();
// ....
// };
//
// In your .cpp file:
// namespace { struct PrivateTag {}; }
// static folly::Singleton<MyExpensiveService, PrivateTag> the_singleton;
// std::shared_ptr<MyExpensiveService> MyExpensiveService::getInstance() {
// return the_singleton.try_get();
// }
//
// Code in other modules can access it via:
//
// auto instance = MyExpensiveService::getInstance();
//
// Advanced usage and notes:
//
// You can also access a singleton instance with
// `Singleton<ObjectType, TagType>::try_get()`. We recommend
// that you prefer the form `the_singleton.try_get()` because it ensures that
// `the_singleton` is used and cannot be garbage-collected during linking: this
// is necessary because the constructor of `the_singleton` is what registers it
// to the SingletonVault.
//
// The singleton will be created on demand. If the constructor for
// MyExpensiveService actually makes use of *another* Singleton, then
// the right thing will happen -- that other singleton will complete
// construction before get() returns. However, in the event of a
// circular dependency, a runtime error will occur.
//
// You can have multiple singletons of the same underlying type, but
// each must be given a unique tag. If no tag is specified a default tag is
// used. We recommend that you use a tag from an anonymous namespace private to
// your implementation file, as this ensures that the singleton is only
// available via your interface and not also through Singleton<T>::try_get()
//
// namespace {
// struct Tag1 {};
// struct Tag2 {};
// folly::Singleton<MyExpensiveService> s_default;
// folly::Singleton<MyExpensiveService, Tag1> s1;
// folly::Singleton<MyExpensiveService, Tag2> s2;
// }
// ...
// MyExpensiveService* svc_default = s_default.get();
// MyExpensiveService* svc1 = s1.get();
// MyExpensiveService* svc2 = s2.get();
//
// By default, the singleton instance is constructed via new and
// deleted via delete, but this is configurable:
//
// namespace { folly::Singleton<MyExpensiveService> the_singleton(create,
// destroy); }
//
// Where create and destroy are functions, Singleton<T>::CreateFunc
// Singleton<T>::TeardownFunc.
//
// For example, if you need to pass arguments to your class's constructor:
// class X {
// public:
// X(int a1, std::string a2);
// // ...
// }
// Make your singleton like this:
// folly::Singleton<X> singleton_x([]() { return new X(42, "foo"); });
//
// The above examples detail a situation where an expensive singleton is loaded
// on-demand (thus only if needed). However if there is an expensive singleton
// that will likely be needed, and initialization takes a potentially long time,
// e.g. while initializing, parsing some files, talking to remote services,
// making uses of other singletons, and so on, the initialization of those can
// be scheduled up front, or "eagerly".
//
// In that case the singleton can be declared this way:
//
// namespace {
// auto the_singleton =
// folly::Singleton<MyExpensiveService>(/* optional create, destroy args */)
// .shouldEagerInit();
// }
//
// This way the singleton's instance is built at program initialization,
// if the program opted-in to that feature by calling "doEagerInit" or
// "doEagerInitVia" during its startup.
//
// What if you need to destroy all of your singletons? Say, some of
// your singletons manage threads, but you need to fork? Or your unit
// test wants to clean up all global state? Then you can call
// SingletonVault::singleton()->destroyInstances(), which invokes the
// TeardownFunc for each singleton, in the reverse order they were
// created. It is your responsibility to ensure your singletons can
// handle cases where the singletons they depend on go away, however.
// Singletons won't be recreated after destroyInstances call. If you
// want to re-enable singleton creation (say after fork was called) you
// should call reenableInstances.
#pragma once
#include <folly/Exception.h>
#include <folly/Executor.h>
#include <folly/Memory.h>
#include <folly/Synchronized.h>
#include <folly/detail/Singleton.h>
#include <folly/detail/StaticSingletonManager.h>
#include <folly/experimental/ReadMostlySharedPtr.h>
#include <folly/hash/Hash.h>
#include <folly/lang/Exception.h>
#include <folly/memory/SanitizeLeak.h>
#include <folly/synchronization/Baton.h>
#include <folly/synchronization/RWSpinLock.h>
#include <algorithm>
#include <atomic>
#include <condition_variable>
#include <functional>
#include <list>
#include <memory>
#include <mutex>
#include <string>
#include <thread>
#include <typeindex>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <glog/logging.h>
// use this guard to handleSingleton breaking change in 3rd party code
#ifndef FOLLY_SINGLETON_TRY_GET
#define FOLLY_SINGLETON_TRY_GET
#endif
namespace folly {
// For actual usage, please see the Singleton<T> class at the bottom
// of this file; that is what you will actually interact with.
// SingletonVault is the class that manages singleton instances. It
// is unaware of the underlying types of singletons, and simply
// manages lifecycles and invokes CreateFunc and TeardownFunc when
// appropriate. In general, you won't need to interact with the
// SingletonVault itself.
//
// A vault goes through a few stages of life:
//
// 1. Registration phase; singletons can be registered:
// a) Strict: no singleton can be created in this stage.
// b) Relaxed: singleton can be created (the default vault is Relaxed).
// 2. registrationComplete() has been called; singletons can no
// longer be registered, but they can be created.
// 3. A vault can return to stage 1 when destroyInstances is called.
//
// In general, you don't need to worry about any of the above; just
// ensure registrationComplete() is called near the top of your main()
// function, otherwise no singletons can be instantiated.
class SingletonVault;
namespace detail {
// A TypeDescriptor is the unique handle for a given singleton. It is
// a combinaiton of the type and of the optional name, and is used as
// a key in unordered_maps.
class TypeDescriptor {
public:
TypeDescriptor(const std::type_info& ti, const std::type_info& tag_ti)
: ti_(ti), tag_ti_(tag_ti) {}
TypeDescriptor(const TypeDescriptor& other)
: ti_(other.ti_), tag_ti_(other.tag_ti_) {}
TypeDescriptor& operator=(const TypeDescriptor& other) {
if (this != &other) {
ti_ = other.ti_;
tag_ti_ = other.tag_ti_;
}
return *this;
}
std::string name() const;
friend class TypeDescriptorHasher;
bool operator==(const TypeDescriptor& other) const {
return ti_ == other.ti_ && tag_ti_ == other.tag_ti_;
}
private:
std::type_index ti_;
std::type_index tag_ti_;
};
class TypeDescriptorHasher {
public:
size_t operator()(const TypeDescriptor& ti) const {
return folly::hash::hash_combine(ti.ti_, ti.tag_ti_);
}
};
[[noreturn]] void singletonWarnLeakyDoubleRegistrationAndAbort(
const TypeDescriptor& type);
[[noreturn]] void singletonWarnLeakyInstantiatingNotRegisteredAndAbort(
const TypeDescriptor& type);
[[noreturn]] void singletonWarnRegisterMockEarlyAndAbort(
const TypeDescriptor& type);
void singletonWarnDestroyInstanceLeak(
const TypeDescriptor& type,
const void* ptr);
[[noreturn]] void singletonWarnCreateCircularDependencyAndAbort(
const TypeDescriptor& type);
[[noreturn]] void singletonWarnCreateUnregisteredAndAbort(
const TypeDescriptor& type);
[[noreturn]] void singletonWarnCreateBeforeRegistrationCompleteAndAbort(
const TypeDescriptor& type);
void singletonPrintDestructionStackTrace(const TypeDescriptor& type);
[[noreturn]] void singletonThrowNullCreator(const std::type_info& type);
[[noreturn]] void singletonThrowGetInvokedAfterDestruction(
const TypeDescriptor& type);
struct SingletonVaultState {
// The two stages of life for a vault, as mentioned in the class comment.
enum class Type {
Running,
Quiescing,
};
Type state{Type::Running};
bool registrationComplete{false};
// Each singleton in the vault can be in two states: dead
// (registered but never created), living (CreateFunc returned an instance).
void check(
Type expected,
const char* msg = "Unexpected singleton state change") const {
if (expected != state) {
throw_exception<std::logic_error>(msg);
}
}
};
// This interface is used by SingletonVault to interact with SingletonHolders.
// Having a non-template interface allows SingletonVault to keep a list of all
// SingletonHolders.
class SingletonHolderBase {
public:
explicit SingletonHolderBase(TypeDescriptor typeDesc) noexcept
: type_(typeDesc) {}
virtual ~SingletonHolderBase() = default;
TypeDescriptor type() const {
return type_;
}
virtual bool hasLiveInstance() = 0;
virtual void createInstance() = 0;
virtual bool creationStarted() = 0;
virtual void preDestroyInstance(ReadMostlyMainPtrDeleter<>&) = 0;
virtual void destroyInstance() = 0;
private:
TypeDescriptor type_;
};
// An actual instance of a singleton, tracking the instance itself,
// its state as described above, and the create and teardown
// functions.
template <typename T>
struct SingletonHolder : public SingletonHolderBase {
public:
typedef std::function<void(T*)> TeardownFunc;
typedef std::function<T*(void)> CreateFunc;
template <typename Tag, typename VaultTag>
inline static SingletonHolder<T>& singleton();
inline T* get();
inline std::weak_ptr<T> get_weak();
inline std::shared_ptr<T> try_get();
inline folly::ReadMostlySharedPtr<T> try_get_fast();
template <typename Func>
inline invoke_result_t<Func, T*> apply(Func f);
inline void vivify();
void registerSingleton(CreateFunc c, TeardownFunc t);
void registerSingletonMock(CreateFunc c, TeardownFunc t);
bool hasLiveInstance() override;
void createInstance() override;
bool creationStarted() override;
void preDestroyInstance(ReadMostlyMainPtrDeleter<>&) override;
void destroyInstance() override;
private:
template <typename Tag, typename VaultTag>
struct Impl;
SingletonHolder(TypeDescriptor type, SingletonVault& vault) noexcept;
enum class SingletonHolderState {
NotRegistered,
Dead,
Living,
};
SingletonVault& vault_;
// mutex protects the entire entry during construction/destruction
std::mutex mutex_;
// State of the singleton entry. If state is Living, instance_ptr and
// instance_weak can be safely accessed w/o synchronization.
std::atomic<SingletonHolderState> state_{SingletonHolderState::NotRegistered};
// the thread creating the singleton (only valid while creating an object)
std::atomic<std::thread::id> creating_thread_{};
// The singleton itself and related functions.
// holds a ReadMostlyMainPtr to singleton instance, set when state is changed
// from Dead to Living. Reset when state is changed from Living to Dead.
folly::ReadMostlyMainPtr<T> instance_;
// used to release all ReadMostlyMainPtrs at once
folly::ReadMostlySharedPtr<T> instance_copy_;
// weak_ptr to the singleton instance, set when state is changed from Dead
// to Living. We never write to this object after initialization, so it is
// safe to read it from different threads w/o synchronization if we know
// that state is set to Living
std::weak_ptr<T> instance_weak_;
// Fast equivalent of instance_weak_
folly::ReadMostlyWeakPtr<T> instance_weak_fast_;
// Time we wait on destroy_baton after releasing Singleton shared_ptr.
std::shared_ptr<folly::Baton<>> destroy_baton_;
T* instance_ptr_ = nullptr;
CreateFunc create_ = nullptr;
TeardownFunc teardown_ = nullptr;
std::shared_ptr<std::atomic<bool>> print_destructor_stack_trace_;
SingletonHolder(const SingletonHolder&) = delete;
SingletonHolder& operator=(const SingletonHolder&) = delete;
SingletonHolder& operator=(SingletonHolder&&) = delete;
SingletonHolder(SingletonHolder&&) = delete;
};
} // namespace detail
class SingletonVault {
public:
enum class Type {
Strict, // Singletons can't be created before registrationComplete()
Relaxed, // Singletons can be created before registrationComplete()
};
/**
* Clears all singletons in the given vault at ctor and dtor times.
* Useful for unit-tests that need to clear the world.
*
* This need can arise when a unit-test needs to swap out an object used by a
* singleton for a test-double, but the singleton needing its dependency to be
* swapped has a type or a tag local to some other translation unit and
* unavailable in the current translation unit.
*
* Other, better approaches to this need are "plz 2 refactor" ....
*/
struct ScopedExpunger {
SingletonVault* vault;
explicit ScopedExpunger(SingletonVault* v) : vault(v) {
expunge();
}
~ScopedExpunger() {
expunge();
}
void expunge() {
vault->destroyInstances();
vault->reenableInstances();
}
};
static Type defaultVaultType();
explicit SingletonVault(Type type = defaultVaultType()) noexcept
: type_(type) {}
// Destructor is only called by unit tests to check destroyInstances.
~SingletonVault();
typedef std::function<void(void*)> TeardownFunc;
typedef std::function<void*(void)> CreateFunc;
// Ensure that Singleton has not been registered previously and that
// registration is not complete. If validations succeeds,
// register a singleton of a given type with the create and teardown
// functions.
void registerSingleton(detail::SingletonHolderBase* entry);
/**
* Called by `Singleton<T>.shouldEagerInit()` to ensure the instance
* is built when `doEagerInit[Via]` is called; see those methods
* for more info.
*/
void addEagerInitSingleton(detail::SingletonHolderBase* entry);
// Mark registration is complete; no more singletons can be
// registered at this point.
void registrationComplete();
/**
* Initialize all singletons which were marked as eager-initialized
* (using `shouldEagerInit()`). No return value. Propagates exceptions
* from constructors / create functions, as is the usual case when calling
* for example `Singleton<Foo>::get_weak()`.
*/
void doEagerInit();
/**
* Schedule eager singletons' initializations through the given executor.
* If baton ptr is not null, its `post` method is called after all
* early initialization has completed.
*
* If exceptions are thrown during initialization, this method will still
* `post` the baton to indicate completion. The exception will not propagate
* and future attempts to `try_get` or `get_weak` the failed singleton will
* retry initialization.
*
* Sample usage:
*
* folly::IOThreadPoolExecutor executor(max_concurrency_level);
* folly::Baton<> done;
* doEagerInitVia(executor, &done);
* done.wait(); // or 'try_wait_for', etc.
*
*/
void doEagerInitVia(Executor& exe, folly::Baton<>* done = nullptr);
// Destroy all singletons; when complete, the vault can't create
// singletons once again until reenableInstances() is called.
void destroyInstances();
// Enable re-creating singletons after destroyInstances() was called.
void reenableInstances();
// For testing; how many registered and living singletons we have.
size_t registeredSingletonCount() const {
return singletons_.rlock()->size();
}
/**
* Flips to true if eager initialization was used, and has completed.
* Never set to true if "doEagerInit()" or "doEagerInitVia" never called.
*/
bool eagerInitComplete() const;
size_t livingSingletonCount() const {
auto singletons = singletons_.rlock();
size_t ret = 0;
for (const auto& p : *singletons) {
if (p.second->hasLiveInstance()) {
++ret;
}
}
return ret;
}
// A well-known vault; you can actually have others, but this is the
// default.
static SingletonVault* singleton() {
return singleton<>();
}
// Gets singleton vault for any Tag. Non-default tag should be used in unit
// tests only.
template <typename VaultTag = detail::DefaultTag>
static SingletonVault* singleton() {
return &detail::createGlobal<SingletonVault, VaultTag>();
}
void setType(Type type) {
type_ = type;
}
private:
template <typename T>
friend struct detail::SingletonHolder;
// This method only matters if registrationComplete() is never called.
// Otherwise destroyInstances is scheduled to be executed atexit.
//
// Initializes static object, which calls destroyInstances on destruction.
// Used to have better deletion ordering with singleton not managed by
// folly::Singleton. The desruction will happen in the following order:
// 1. Singletons, not managed by folly::Singleton, which were created after
// any of the singletons managed by folly::Singleton was requested.
// 2. All singletons managed by folly::Singleton
// 3. Singletons, not managed by folly::Singleton, which were created before
// any of the singletons managed by folly::Singleton was requested.
static void scheduleDestroyInstances();
typedef std::unordered_map<
detail::TypeDescriptor,
detail::SingletonHolderBase*,
detail::TypeDescriptorHasher>
SingletonMap;
// Use SharedMutexSuppressTSAN to suppress noisy lock inversions when building
// with TSAN. If TSAN is not enabled, SharedMutexSuppressTSAN is equivalent
// to a normal SharedMutex.
Synchronized<SingletonMap, SharedMutexSuppressTSAN> singletons_;
Synchronized<
std::unordered_set<detail::SingletonHolderBase*>,
SharedMutexSuppressTSAN>
eagerInitSingletons_;
Synchronized<std::vector<detail::TypeDescriptor>, SharedMutexSuppressTSAN>
creationOrder_;
// Using SharedMutexReadPriority is important here, because we want to make
// sure we don't block nested singleton creation happening concurrently with
// destroyInstances().
Synchronized<detail::SingletonVaultState, SharedMutexReadPriority> state_;
Type type_;
};
// This is the wrapper class that most users actually interact with.
// It allows for simple access to registering and instantiating
// singletons. Create instances of this class in the global scope of
// type Singleton<T> to register your singleton for later access via
// Singleton<T>::try_get().
template <
typename T,
typename Tag = detail::DefaultTag,
typename VaultTag = detail::DefaultTag /* for testing */>
class Singleton {
public:
typedef std::function<T*(void)> CreateFunc;
typedef std::function<void(T*)> TeardownFunc;
// Generally your program life cycle should be fine with calling
// get() repeatedly rather than saving the reference, and then not
// call get() during process shutdown.
[[deprecated("Replaced by try_get")]] static T* get() {
return getEntry().get();
}
// If, however, you do need to hold a reference to the specific
// singleton, you can try to do so with a weak_ptr. Avoid this when
// possible but the inability to lock the weak pointer can be a
// signal that the vault has been destroyed.
[[deprecated("Replaced by try_get")]] static std::weak_ptr<T> get_weak() {
return getEntry().get_weak();
}
// Preferred alternative to get_weak, it returns shared_ptr that can be
// stored; a singleton won't be destroyed unless shared_ptr is destroyed.
// Avoid holding these shared_ptrs beyond the scope of a function;
// don't put them in member variables, always use try_get() instead
//
// try_get() can return nullptr if the singleton was destroyed, caller is
// responsible for handling nullptr return
static std::shared_ptr<T> try_get() {
return getEntry().try_get();
}
static folly::ReadMostlySharedPtr<T> try_get_fast() {
return getEntry().try_get_fast();
}
/**
* Applies a callback to the possibly-nullptr singleton instance, returning
* the callback's result. That is, the following two are functionally
* equivalent:
* singleton.apply(std::ref(f));
* f(singleton.try_get().get());
*
* For example, the following returns the singleton
* instance directly without any extra operations on the instance:
* auto ret = Singleton<T>::apply([](auto* v) { return v; });
*/
template <typename Func>
static invoke_result_t<Func, T*> apply(Func f) {
return getEntry().apply(std::ref(f));
}
// Quickly ensure the instance exists.
static void vivify() {
getEntry().vivify();
}
explicit Singleton(
std::nullptr_t /* _ */ = nullptr,
typename Singleton::TeardownFunc t = nullptr)
: Singleton([]() { return new T; }, std::move(t)) {}
explicit Singleton(
typename Singleton::CreateFunc c,
typename Singleton::TeardownFunc t = nullptr) {
if (c == nullptr) {
detail::singletonThrowNullCreator(typeid(T));
}
auto vault = SingletonVault::singleton<VaultTag>();
getEntry().registerSingleton(std::move(c), getTeardownFunc(std::move(t)));
vault->registerSingleton(&getEntry());
}
/**
* Should be instantiated as soon as "doEagerInit[Via]" is called.
* Singletons are usually lazy-loaded (built on-demand) but for those which
* are known to be needed, to avoid the potential lag for objects that take
* long to construct during runtime, there is an option to make sure these
* are built up-front.
*
* Use like:
* Singleton<Foo> gFooInstance = Singleton<Foo>(...).shouldEagerInit();
*
* Or alternately, define the singleton as usual, and say
* gFooInstance.shouldEagerInit();
*
* at some point prior to calling registrationComplete().
* Then doEagerInit() or doEagerInitVia(Executor*) can be called.
*/
Singleton& shouldEagerInit() {
auto vault = SingletonVault::singleton<VaultTag>();
vault->addEagerInitSingleton(&getEntry());
return *this;
}
/**
* Construct and inject a mock singleton which should be used only from tests.
* Unlike regular singletons which are initialized once per process lifetime,
* mock singletons live for the duration of a test. This means that one
* process running multiple tests can initialize and register the same
* singleton multiple times. This functionality should be used only from tests
* since it relaxes validation and performance in order to be able to perform
* the injection. The returned mock singleton is functionality identical to
* regular singletons.
*/
static void make_mock(
std::nullptr_t /* c */ = nullptr,
typename Singleton<T>::TeardownFunc t = nullptr) {
make_mock([]() { return new T; }, t);
}
static void make_mock(
CreateFunc c,
typename Singleton<T>::TeardownFunc t = nullptr) {
if (c == nullptr) {
detail::singletonThrowNullCreator(typeid(T));
}
auto& entry = getEntry();
entry.registerSingletonMock(c, getTeardownFunc(t));
}
private:
inline static detail::SingletonHolder<T>& getEntry() {
return detail::SingletonHolder<T>::template singleton<Tag, VaultTag>();
}
// Construct TeardownFunc.
static typename detail::SingletonHolder<T>::TeardownFunc getTeardownFunc(
TeardownFunc t) {
if (t == nullptr) {
return [](T* v) { delete v; };
} else {
return t;
}
}
};
template <typename T, typename Tag = detail::DefaultTag>
class LeakySingleton {
public:
using CreateFunc = std::function<T*()>;
LeakySingleton() : LeakySingleton([] { return new T(); }) {}
explicit LeakySingleton(CreateFunc createFunc) {
auto& entry = entryInstance();
if (entry.state != State::NotRegistered) {
detail::singletonWarnLeakyDoubleRegistrationAndAbort(entry.type_);
}
entry.createFunc = createFunc;
entry.state = State::Dead;
}
static T& get() {
return instance();
}
static void make_mock(std::nullptr_t /* c */ = nullptr) {
make_mock([]() { return new T; });
}
static void make_mock(CreateFunc createFunc) {
if (createFunc == nullptr) {
detail::singletonThrowNullCreator(typeid(T));
}
auto& entry = entryInstance();
if (entry.ptr) {
annotate_object_leaked(std::exchange(entry.ptr, nullptr));
}
entry.createFunc = createFunc;
entry.state = State::Dead;
}
private:
enum class State { NotRegistered, Dead, Living };
struct Entry {
Entry() noexcept {}
Entry(const Entry&) = delete;
Entry& operator=(const Entry&) = delete;
std::atomic<State> state{State::NotRegistered};
T* ptr{nullptr};
CreateFunc createFunc;
std::mutex mutex;
detail::TypeDescriptor type_{typeid(T), typeid(Tag)};
};
static Entry& entryInstance() {
return detail::createGlobal<Entry, Tag>();
}
static T& instance() {
auto& entry = entryInstance();
if (UNLIKELY(entry.state != State::Living)) {
createInstance();
}
return *entry.ptr;
}
static void createInstance() {
auto& entry = entryInstance();
std::lock_guard<std::mutex> lg(entry.mutex);
if (entry.state == State::Living) {
return;
}
if (entry.state == State::NotRegistered) {
detail::singletonWarnLeakyInstantiatingNotRegisteredAndAbort(entry.type_);
}
entry.ptr = entry.createFunc();
entry.state = State::Living;
}
};
} // namespace folly
#include <folly/Singleton-inl.h>