verdnatura-chat/ios/Pods/boost-for-react-native/boost/proto/traits.hpp

1259 lines
46 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////
/// \file traits.hpp
/// Contains definitions for child\<\>, child_c\<\>, left\<\>,
/// right\<\>, tag_of\<\>, and the helper functions child(), child_c(),
/// value(), left() and right().
//
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_PROTO_ARG_TRAITS_HPP_EAN_04_01_2005
#define BOOST_PROTO_ARG_TRAITS_HPP_EAN_04_01_2005
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/preprocessor/iteration/iterate.hpp>
#include <boost/preprocessor/repetition/enum.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_params.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
#include <boost/preprocessor/repetition/repeat_from_to.hpp>
#include <boost/preprocessor/facilities/intercept.hpp>
#include <boost/preprocessor/arithmetic/sub.hpp>
#include <boost/static_assert.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/proto/detail/template_arity.hpp>
#include <boost/type_traits/is_pod.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/add_const.hpp>
#include <boost/proto/proto_fwd.hpp>
#include <boost/proto/args.hpp>
#include <boost/proto/domain.hpp>
#include <boost/proto/transform/pass_through.hpp>
#if defined(_MSC_VER)
# pragma warning(push)
# if BOOST_WORKAROUND( BOOST_MSVC, >= 1400 )
# pragma warning(disable: 4180) // warning C4180: qualifier applied to function type has no meaning; ignored
# endif
# pragma warning(disable : 4714) // function 'xxx' marked as __forceinline not inlined
#endif
namespace boost { namespace proto
{
namespace detail
{
template<typename T, typename Void = void>
struct if_vararg
{};
template<typename T>
struct if_vararg<T, typename T::proto_is_vararg_>
: T
{};
template<typename T, typename Void = void>
struct is_callable2_
: mpl::false_
{};
template<typename T>
struct is_callable2_<T, typename T::proto_is_callable_>
: mpl::true_
{};
template<typename T BOOST_PROTO_TEMPLATE_ARITY_PARAM(long Arity = boost::proto::detail::template_arity<T>::value)>
struct is_callable_
: is_callable2_<T>
{};
}
/// \brief Boolean metafunction which detects whether a type is
/// a callable function object type or not.
///
/// <tt>is_callable\<\></tt> is used by the <tt>when\<\></tt> transform
/// to determine whether a function type <tt>R(A1,A2,...AN)</tt> is a
/// callable transform or an object transform. (The former are evaluated
/// using <tt>call\<\></tt> and the later with <tt>make\<\></tt>.) If
/// <tt>is_callable\<R\>::value</tt> is \c true, the function type is
/// a callable transform; otherwise, it is an object transform.
///
/// Unless specialized for a type \c T, <tt>is_callable\<T\>::value</tt>
/// is computed as follows:
///
/// \li If \c T is a template type <tt>X\<Y0,Y1,...YN\></tt>, where all \c Yx
/// are types for \c x in <tt>[0,N]</tt>, <tt>is_callable\<T\>::value</tt>
/// is <tt>is_same\<YN, proto::callable\>::value</tt>.
/// \li If \c T has a nested type \c proto_is_callable_ that is a typedef
/// for \c void, <tt>is_callable\<T\>::value</tt> is \c true. (Note: this is
/// the case for any type that derives from \c proto::callable.)
/// \li Otherwise, <tt>is_callable\<T\>::value</tt> is \c false.
template<typename T>
struct is_callable
: proto::detail::is_callable_<T>
{};
/// INTERNAL ONLY
///
template<>
struct is_callable<proto::_>
: mpl::true_
{};
/// INTERNAL ONLY
///
template<>
struct is_callable<proto::callable>
: mpl::false_
{};
/// INTERNAL ONLY
///
template<typename PrimitiveTransform, typename X>
struct is_callable<proto::transform<PrimitiveTransform, X> >
: mpl::false_
{};
#if BOOST_WORKAROUND(__GNUC__, == 3) || (BOOST_WORKAROUND(__GNUC__, == 4) && __GNUC_MINOR__ == 0)
// work around GCC bug
template<typename Tag, typename Args, long N>
struct is_callable<proto::expr<Tag, Args, N> >
: mpl::false_
{};
// work around GCC bug
template<typename Tag, typename Args, long N>
struct is_callable<proto::basic_expr<Tag, Args, N> >
: mpl::false_
{};
#endif
namespace detail
{
template<typename T, typename Void /*= void*/>
struct is_transform_
: mpl::false_
{};
template<typename T>
struct is_transform_<T, typename T::proto_is_transform_>
: mpl::true_
{};
}
/// \brief Boolean metafunction which detects whether a type is
/// a PrimitiveTransform type or not.
///
/// <tt>is_transform\<\></tt> is used by the <tt>call\<\></tt> transform
/// to determine whether the function types <tt>R()</tt>, <tt>R(A1)</tt>,
/// and <tt>R(A1, A2)</tt> should be passed the expression, state and data
/// parameters (as needed).
///
/// Unless specialized for a type \c T, <tt>is_transform\<T\>::value</tt>
/// is computed as follows:
///
/// \li If \c T has a nested type \c proto_is_transform_ that is a typedef
/// for \c void, <tt>is_transform\<T\>::value</tt> is \c true. (Note: this is
/// the case for any type that derives from an instantiation of \c proto::transform.)
/// \li Otherwise, <tt>is_transform\<T\>::value</tt> is \c false.
template<typename T>
struct is_transform
: proto::detail::is_transform_<T>
{};
namespace detail
{
template<typename T, typename Void /*= void*/>
struct is_aggregate_
: is_pod<T>
{};
template<typename Tag, typename Args, long N>
struct is_aggregate_<proto::expr<Tag, Args, N>, void>
: mpl::true_
{};
template<typename Tag, typename Args, long N>
struct is_aggregate_<proto::basic_expr<Tag, Args, N>, void>
: mpl::true_
{};
template<typename T>
struct is_aggregate_<T, typename T::proto_is_aggregate_>
: mpl::true_
{};
}
/// \brief A Boolean metafunction that indicates whether a type requires
/// aggregate initialization.
///
/// <tt>is_aggregate\<\></tt> is used by the <tt>make\<\></tt> transform
/// to determine how to construct an object of some type \c T, given some
/// initialization arguments <tt>a0,a1,...aN</tt>.
/// If <tt>is_aggregate\<T\>::value</tt> is \c true, then an object of
/// type T will be initialized as <tt>T t = {a0,a1,...aN};</tt>. Otherwise,
/// it will be initialized as <tt>T t(a0,a1,...aN)</tt>.
template<typename T>
struct is_aggregate
: proto::detail::is_aggregate_<T>
{};
/// \brief A Boolean metafunction that indicates whether a given
/// type \c T is a Proto expression type.
///
/// If \c T has a nested type \c proto_is_expr_ that is a typedef
/// for \c void, <tt>is_expr\<T\>::value</tt> is \c true. (Note, this
/// is the case for <tt>proto::expr\<\></tt>, any type that is derived
/// from <tt>proto::extends\<\></tt> or that uses the
/// <tt>BOOST_PROTO_BASIC_EXTENDS()</tt> macro.) Otherwise,
/// <tt>is_expr\<T\>::value</tt> is \c false.
template<typename T, typename Void /* = void*/>
struct is_expr
: mpl::false_
{};
/// \brief A Boolean metafunction that indicates whether a given
/// type \c T is a Proto expression type.
///
/// If \c T has a nested type \c proto_is_expr_ that is a typedef
/// for \c void, <tt>is_expr\<T\>::value</tt> is \c true. (Note, this
/// is the case for <tt>proto::expr\<\></tt>, any type that is derived
/// from <tt>proto::extends\<\></tt> or that uses the
/// <tt>BOOST_PROTO_BASIC_EXTENDS()</tt> macro.) Otherwise,
/// <tt>is_expr\<T\>::value</tt> is \c false.
template<typename T>
struct is_expr<T, typename T::proto_is_expr_>
: mpl::true_
{};
template<typename T>
struct is_expr<T &, void>
: is_expr<T>
{};
/// \brief A metafunction that returns the tag type of a
/// Proto expression.
template<typename Expr>
struct tag_of
{
typedef typename Expr::proto_tag type;
};
template<typename Expr>
struct tag_of<Expr &>
{
typedef typename Expr::proto_tag type;
};
/// \brief A metafunction that returns the arity of a
/// Proto expression.
template<typename Expr>
struct arity_of
: Expr::proto_arity
{};
template<typename Expr>
struct arity_of<Expr &>
: Expr::proto_arity
{};
namespace result_of
{
/// \brief A metafunction that computes the return type of the \c as_expr()
/// function.
template<typename T, typename Domain /*= default_domain*/>
struct as_expr
{
typedef typename Domain::template as_expr<T>::result_type type;
};
/// \brief A metafunction that computes the return type of the \c as_child()
/// function.
template<typename T, typename Domain /*= default_domain*/>
struct as_child
{
typedef typename Domain::template as_child<T>::result_type type;
};
/// \brief A metafunction that returns the type of the Nth child
/// of a Proto expression, where N is an MPL Integral Constant.
///
/// <tt>result_of::child\<Expr, N\></tt> is equivalent to
/// <tt>result_of::child_c\<Expr, N::value\></tt>.
template<typename Expr, typename N /* = mpl::long_<0>*/>
struct child
: child_c<Expr, N::value>
{};
/// \brief A metafunction that returns the type of the value
/// of a terminal Proto expression.
///
template<typename Expr>
struct value
{
/// Verify that we are actually operating on a terminal
BOOST_STATIC_ASSERT(0 == Expr::proto_arity_c);
/// The raw type of the Nth child as it is stored within
/// \c Expr. This may be a value or a reference
typedef typename Expr::proto_child0 value_type;
/// The "value" type of the child, suitable for storage by value,
/// computed as follows:
/// \li <tt>T const(&)[N]</tt> becomes <tt>T[N]</tt>
/// \li <tt>T[N]</tt> becomes <tt>T[N]</tt>
/// \li <tt>T(&)[N]</tt> becomes <tt>T[N]</tt>
/// \li <tt>R(&)(A0,...)</tt> becomes <tt>R(&)(A0,...)</tt>
/// \li <tt>T const &</tt> becomes <tt>T</tt>
/// \li <tt>T &</tt> becomes <tt>T</tt>
/// \li <tt>T</tt> becomes <tt>T</tt>
typedef typename detail::term_traits<typename Expr::proto_child0>::value_type type;
};
template<typename Expr>
struct value<Expr &>
{
/// Verify that we are actually operating on a terminal
BOOST_STATIC_ASSERT(0 == Expr::proto_arity_c);
/// The raw type of the Nth child as it is stored within
/// \c Expr. This may be a value or a reference
typedef typename Expr::proto_child0 value_type;
/// The "reference" type of the child, suitable for storage by
/// reference, computed as follows:
/// \li <tt>T const(&)[N]</tt> becomes <tt>T const(&)[N]</tt>
/// \li <tt>T[N]</tt> becomes <tt>T(&)[N]</tt>
/// \li <tt>T(&)[N]</tt> becomes <tt>T(&)[N]</tt>
/// \li <tt>R(&)(A0,...)</tt> becomes <tt>R(&)(A0,...)</tt>
/// \li <tt>T const &</tt> becomes <tt>T const &</tt>
/// \li <tt>T &</tt> becomes <tt>T &</tt>
/// \li <tt>T</tt> becomes <tt>T &</tt>
typedef typename detail::term_traits<typename Expr::proto_child0>::reference type;
};
template<typename Expr>
struct value<Expr const &>
{
/// Verify that we are actually operating on a terminal
BOOST_STATIC_ASSERT(0 == Expr::proto_arity_c);
/// The raw type of the Nth child as it is stored within
/// \c Expr. This may be a value or a reference
typedef typename Expr::proto_child0 value_type;
/// The "const reference" type of the child, suitable for storage by
/// const reference, computed as follows:
/// \li <tt>T const(&)[N]</tt> becomes <tt>T const(&)[N]</tt>
/// \li <tt>T[N]</tt> becomes <tt>T const(&)[N]</tt>
/// \li <tt>T(&)[N]</tt> becomes <tt>T(&)[N]</tt>
/// \li <tt>R(&)(A0,...)</tt> becomes <tt>R(&)(A0,...)</tt>
/// \li <tt>T const &</tt> becomes <tt>T const &</tt>
/// \li <tt>T &</tt> becomes <tt>T &</tt>
/// \li <tt>T</tt> becomes <tt>T const &</tt>
typedef typename detail::term_traits<typename Expr::proto_child0>::const_reference type;
};
/// \brief A metafunction that returns the type of the left child
/// of a binary Proto expression.
///
/// <tt>result_of::left\<Expr\></tt> is equivalent to
/// <tt>result_of::child_c\<Expr, 0\></tt>.
template<typename Expr>
struct left
: child_c<Expr, 0>
{};
/// \brief A metafunction that returns the type of the right child
/// of a binary Proto expression.
///
/// <tt>result_of::right\<Expr\></tt> is equivalent to
/// <tt>result_of::child_c\<Expr, 1\></tt>.
template<typename Expr>
struct right
: child_c<Expr, 1>
{};
} // namespace result_of
/// \brief A metafunction for generating terminal expression types,
/// a grammar element for matching terminal expressions, and a
/// PrimitiveTransform that returns the current expression unchanged.
template<typename T>
struct terminal
: proto::transform<terminal<T>, int>
{
typedef proto::expr<proto::tag::terminal, term<T>, 0> type;
typedef proto::basic_expr<proto::tag::terminal, term<T>, 0> proto_grammar;
template<typename Expr, typename State, typename Data>
struct impl : transform_impl<Expr, State, Data>
{
typedef Expr result_type;
/// \param e The current expression
/// \pre <tt>matches\<Expr, terminal\<T\> \>::value</tt> is \c true.
/// \return \c e
/// \throw nothrow
BOOST_FORCEINLINE
BOOST_PROTO_RETURN_TYPE_STRICT_LOOSE(result_type, typename impl::expr_param)
operator ()(
typename impl::expr_param e
, typename impl::state_param
, typename impl::data_param
) const
{
return e;
}
};
/// INTERNAL ONLY
typedef proto::tag::terminal proto_tag;
/// INTERNAL ONLY
typedef T proto_child0;
};
/// \brief A metafunction for generating ternary conditional expression types,
/// a grammar element for matching ternary conditional expressions, and a
/// PrimitiveTransform that dispatches to the <tt>pass_through\<\></tt>
/// transform.
template<typename T, typename U, typename V>
struct if_else_
: proto::transform<if_else_<T, U, V>, int>
{
typedef proto::expr<proto::tag::if_else_, list3<T, U, V>, 3> type;
typedef proto::basic_expr<proto::tag::if_else_, list3<T, U, V>, 3> proto_grammar;
template<typename Expr, typename State, typename Data>
struct impl
: detail::pass_through_impl<if_else_, deduce_domain, Expr, State, Data>
{};
/// INTERNAL ONLY
typedef proto::tag::if_else_ proto_tag;
/// INTERNAL ONLY
typedef T proto_child0;
/// INTERNAL ONLY
typedef U proto_child1;
/// INTERNAL ONLY
typedef V proto_child2;
};
/// \brief A metafunction for generating nullary expression types with a
/// specified tag type,
/// a grammar element for matching nullary expressions, and a
/// PrimitiveTransform that returns the current expression unchanged.
///
/// Use <tt>nullary_expr\<_, _\></tt> as a grammar element to match any
/// nullary expression.
template<typename Tag, typename T>
struct nullary_expr
: proto::transform<nullary_expr<Tag, T>, int>
{
typedef proto::expr<Tag, term<T>, 0> type;
typedef proto::basic_expr<Tag, term<T>, 0> proto_grammar;
template<typename Expr, typename State, typename Data>
struct impl : transform_impl<Expr, State, Data>
{
typedef Expr result_type;
/// \param e The current expression
/// \pre <tt>matches\<Expr, nullary_expr\<Tag, T\> \>::value</tt> is \c true.
/// \return \c e
/// \throw nothrow
BOOST_FORCEINLINE
BOOST_PROTO_RETURN_TYPE_STRICT_LOOSE(result_type, typename impl::expr_param)
operator ()(
typename impl::expr_param e
, typename impl::state_param
, typename impl::data_param
) const
{
return e;
}
};
/// INTERNAL ONLY
typedef Tag proto_tag;
/// INTERNAL ONLY
typedef T proto_child0;
};
/// \brief A metafunction for generating unary expression types with a
/// specified tag type,
/// a grammar element for matching unary expressions, and a
/// PrimitiveTransform that dispatches to the <tt>pass_through\<\></tt>
/// transform.
///
/// Use <tt>unary_expr\<_, _\></tt> as a grammar element to match any
/// unary expression.
template<typename Tag, typename T>
struct unary_expr
: proto::transform<unary_expr<Tag, T>, int>
{
typedef proto::expr<Tag, list1<T>, 1> type;
typedef proto::basic_expr<Tag, list1<T>, 1> proto_grammar;
template<typename Expr, typename State, typename Data>
struct impl
: detail::pass_through_impl<unary_expr, deduce_domain, Expr, State, Data>
{};
/// INTERNAL ONLY
typedef Tag proto_tag;
/// INTERNAL ONLY
typedef T proto_child0;
};
/// \brief A metafunction for generating binary expression types with a
/// specified tag type,
/// a grammar element for matching binary expressions, and a
/// PrimitiveTransform that dispatches to the <tt>pass_through\<\></tt>
/// transform.
///
/// Use <tt>binary_expr\<_, _, _\></tt> as a grammar element to match any
/// binary expression.
template<typename Tag, typename T, typename U>
struct binary_expr
: proto::transform<binary_expr<Tag, T, U>, int>
{
typedef proto::expr<Tag, list2<T, U>, 2> type;
typedef proto::basic_expr<Tag, list2<T, U>, 2> proto_grammar;
template<typename Expr, typename State, typename Data>
struct impl
: detail::pass_through_impl<binary_expr, deduce_domain, Expr, State, Data>
{};
/// INTERNAL ONLY
typedef Tag proto_tag;
/// INTERNAL ONLY
typedef T proto_child0;
/// INTERNAL ONLY
typedef U proto_child1;
};
#define BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(Op) \
template<typename T> \
struct Op \
: proto::transform<Op<T>, int> \
{ \
typedef proto::expr<proto::tag::Op, list1<T>, 1> type; \
typedef proto::basic_expr<proto::tag::Op, list1<T>, 1> proto_grammar; \
\
template<typename Expr, typename State, typename Data> \
struct impl \
: detail::pass_through_impl<Op, deduce_domain, Expr, State, Data> \
{}; \
\
typedef proto::tag::Op proto_tag; \
typedef T proto_child0; \
}; \
/**/
#define BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(Op) \
template<typename T, typename U> \
struct Op \
: proto::transform<Op<T, U>, int> \
{ \
typedef proto::expr<proto::tag::Op, list2<T, U>, 2> type; \
typedef proto::basic_expr<proto::tag::Op, list2<T, U>, 2> proto_grammar; \
\
template<typename Expr, typename State, typename Data> \
struct impl \
: detail::pass_through_impl<Op, deduce_domain, Expr, State, Data> \
{}; \
\
typedef proto::tag::Op proto_tag; \
typedef T proto_child0; \
typedef U proto_child1; \
}; \
/**/
BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(unary_plus)
BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(negate)
BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(dereference)
BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(complement)
BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(address_of)
BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(logical_not)
BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(pre_inc)
BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(pre_dec)
BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(post_inc)
BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(post_dec)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_left)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_right)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(multiplies)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(divides)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(modulus)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(plus)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(minus)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(less)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(greater)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(less_equal)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(greater_equal)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(equal_to)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(not_equal_to)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(logical_or)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(logical_and)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_or)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_and)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_xor)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(comma)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(mem_ptr)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(assign)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_left_assign)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_right_assign)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(multiplies_assign)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(divides_assign)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(modulus_assign)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(plus_assign)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(minus_assign)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_or_assign)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_and_assign)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_xor_assign)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(subscript)
BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(member)
#undef BOOST_PROTO_DEFINE_UNARY_METAFUNCTION
#undef BOOST_PROTO_DEFINE_BINARY_METAFUNCTION
#include <boost/proto/detail/traits.hpp>
namespace functional
{
/// \brief A callable PolymorphicFunctionObject that is
/// equivalent to the \c as_expr() function.
template<typename Domain /* = default_domain*/>
struct as_expr
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result;
template<typename This, typename T>
struct result<This(T)>
{
typedef typename Domain::template as_expr<T>::result_type type;
};
template<typename This, typename T>
struct result<This(T &)>
{
typedef typename Domain::template as_expr<T>::result_type type;
};
/// \brief Wrap an object in a Proto terminal if it isn't a
/// Proto expression already.
/// \param t The object to wrap.
/// \return <tt>proto::as_expr\<Domain\>(t)</tt>
template<typename T>
BOOST_FORCEINLINE
typename add_const<typename result<as_expr(T &)>::type>::type
operator ()(T &t) const
{
return typename Domain::template as_expr<T>()(t);
}
/// \overload
///
template<typename T>
BOOST_FORCEINLINE
typename add_const<typename result<as_expr(T const &)>::type>::type
operator ()(T const &t) const
{
return typename Domain::template as_expr<T const>()(t);
}
#if BOOST_WORKAROUND(BOOST_MSVC, == 1310)
template<typename T, std::size_t N_>
BOOST_FORCEINLINE
typename add_const<typename result<as_expr(T (&)[N_])>::type>::type
operator ()(T (&t)[N_]) const
{
return typename Domain::template as_expr<T[N_]>()(t);
}
template<typename T, std::size_t N_>
BOOST_FORCEINLINE
typename add_const<typename result<as_expr(T const (&)[N_])>::type>::type
operator ()(T const (&t)[N_]) const
{
return typename Domain::template as_expr<T const[N_]>()(t);
}
#endif
};
/// \brief A callable PolymorphicFunctionObject that is
/// equivalent to the \c as_child() function.
template<typename Domain /* = default_domain*/>
struct as_child
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result;
template<typename This, typename T>
struct result<This(T)>
{
typedef typename Domain::template as_child<T>::result_type type;
};
template<typename This, typename T>
struct result<This(T &)>
{
typedef typename Domain::template as_child<T>::result_type type;
};
/// \brief Wrap an object in a Proto terminal if it isn't a
/// Proto expression already.
/// \param t The object to wrap.
/// \return <tt>proto::as_child\<Domain\>(t)</tt>
template<typename T>
BOOST_FORCEINLINE
typename add_const<typename result<as_child(T &)>::type>::type
operator ()(T &t) const
{
return typename Domain::template as_child<T>()(t);
}
/// \overload
///
template<typename T>
BOOST_FORCEINLINE
typename add_const<typename result<as_child(T const &)>::type>::type
operator ()(T const &t) const
{
return typename Domain::template as_child<T const>()(t);
}
};
/// \brief A callable PolymorphicFunctionObject that is
/// equivalent to the \c child_c() function.
template<long N>
struct child_c
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result;
template<typename This, typename Expr>
struct result<This(Expr)>
{
typedef typename result_of::child_c<Expr, N>::type type;
};
/// \brief Return the Nth child of the given expression.
/// \param expr The expression node.
/// \pre <tt>is_expr\<Expr\>::value</tt> is \c true
/// \pre <tt>N \< Expr::proto_arity::value</tt>
/// \return <tt>proto::child_c\<N\>(expr)</tt>
/// \throw nothrow
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::child_c<Expr &, N>::type
operator ()(Expr &e) const
{
return result_of::child_c<Expr &, N>::call(e);
}
/// \overload
///
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::child_c<Expr const &, N>::type
operator ()(Expr const &e) const
{
return result_of::child_c<Expr const &, N>::call(e);
}
};
/// \brief A callable PolymorphicFunctionObject that is
/// equivalent to the \c child() function.
///
/// A callable PolymorphicFunctionObject that is
/// equivalent to the \c child() function. \c N is required
/// to be an MPL Integral Constant.
template<typename N /* = mpl::long_<0>*/>
struct child
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result;
template<typename This, typename Expr>
struct result<This(Expr)>
{
typedef typename result_of::child<Expr, N>::type type;
};
/// \brief Return the Nth child of the given expression.
/// \param expr The expression node.
/// \pre <tt>is_expr\<Expr\>::value</tt> is \c true
/// \pre <tt>N::value \< Expr::proto_arity::value</tt>
/// \return <tt>proto::child\<N\>(expr)</tt>
/// \throw nothrow
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::child<Expr &, N>::type
operator ()(Expr &e) const
{
return result_of::child<Expr &, N>::call(e);
}
/// \overload
///
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::child<Expr const &, N>::type
operator ()(Expr const &e) const
{
return result_of::child<Expr const &, N>::call(e);
}
};
/// \brief A callable PolymorphicFunctionObject that is
/// equivalent to the \c value() function.
struct value
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result;
template<typename This, typename Expr>
struct result<This(Expr)>
{
typedef typename result_of::value<Expr>::type type;
};
/// \brief Return the value of the given terminal expression.
/// \param expr The terminal expression node.
/// \pre <tt>is_expr\<Expr\>::value</tt> is \c true
/// \pre <tt>0 == Expr::proto_arity::value</tt>
/// \return <tt>proto::value(expr)</tt>
/// \throw nothrow
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::value<Expr &>::type
operator ()(Expr &e) const
{
return e.proto_base().child0;
}
/// \overload
///
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::value<Expr const &>::type
operator ()(Expr const &e) const
{
return e.proto_base().child0;
}
};
/// \brief A callable PolymorphicFunctionObject that is
/// equivalent to the \c left() function.
struct left
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result;
template<typename This, typename Expr>
struct result<This(Expr)>
{
typedef typename result_of::left<Expr>::type type;
};
/// \brief Return the left child of the given binary expression.
/// \param expr The expression node.
/// \pre <tt>is_expr\<Expr\>::value</tt> is \c true
/// \pre <tt>2 == Expr::proto_arity::value</tt>
/// \return <tt>proto::left(expr)</tt>
/// \throw nothrow
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::left<Expr &>::type
operator ()(Expr &e) const
{
return e.proto_base().child0;
}
/// \overload
///
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::left<Expr const &>::type
operator ()(Expr const &e) const
{
return e.proto_base().child0;
}
};
/// \brief A callable PolymorphicFunctionObject that is
/// equivalent to the \c right() function.
struct right
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result;
template<typename This, typename Expr>
struct result<This(Expr)>
{
typedef typename result_of::right<Expr>::type type;
};
/// \brief Return the right child of the given binary expression.
/// \param expr The expression node.
/// \pre <tt>is_expr\<Expr\>::value</tt> is \c true
/// \pre <tt>2 == Expr::proto_arity::value</tt>
/// \return <tt>proto::right(expr)</tt>
/// \throw nothrow
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::right<Expr &>::type
operator ()(Expr &e) const
{
return e.proto_base().child1;
}
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::right<Expr const &>::type
operator ()(Expr const &e) const
{
return e.proto_base().child1;
}
};
}
/// \brief A function that wraps non-Proto expression types in Proto
/// terminals and leaves Proto expression types alone.
///
/// The <tt>as_expr()</tt> function turns objects into Proto terminals if
/// they are not Proto expression types already. Non-Proto types are
/// held by value, if possible. Types which are already Proto types are
/// left alone and returned by reference.
///
/// This function can be called either with an explicitly specified
/// \c Domain parameter (i.e., <tt>as_expr\<Domain\>(t)</tt>), or
/// without (i.e., <tt>as_expr(t)</tt>). If no domain is
/// specified, \c default_domain is assumed.
///
/// If <tt>is_expr\<T\>::value</tt> is \c true, then the argument is
/// returned unmodified, by reference. Otherwise, the argument is wrapped
/// in a Proto terminal expression node according to the following rules.
/// If \c T is a function type, let \c A be <tt>T &</tt>. Otherwise, let
/// \c A be the type \c T stripped of cv-qualifiers. Then, \c as_expr()
/// returns <tt>Domain()(terminal\<A\>::type::make(t))</tt>.
///
/// \param t The object to wrap.
template<typename T>
BOOST_FORCEINLINE
typename add_const<typename result_of::as_expr<T, default_domain>::type>::type
as_expr(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))
{
return default_domain::as_expr<T>()(t);
}
/// \overload
///
template<typename T>
BOOST_FORCEINLINE
typename add_const<typename result_of::as_expr<T const, default_domain>::type>::type
as_expr(T const &t)
{
return default_domain::as_expr<T const>()(t);
}
/// \overload
///
template<typename Domain, typename T>
BOOST_FORCEINLINE
typename add_const<typename result_of::as_expr<T, Domain>::type>::type
as_expr(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))
{
return typename Domain::template as_expr<T>()(t);
}
/// \overload
///
template<typename Domain, typename T>
BOOST_FORCEINLINE
typename add_const<typename result_of::as_expr<T const, Domain>::type>::type
as_expr(T const &t)
{
return typename Domain::template as_expr<T const>()(t);
}
/// \brief A function that wraps non-Proto expression types in Proto
/// terminals (by reference) and returns Proto expression types by
/// reference
///
/// The <tt>as_child()</tt> function turns objects into Proto terminals if
/// they are not Proto expression types already. Non-Proto types are
/// held by reference. Types which are already Proto types are simply
/// returned as-is.
///
/// This function can be called either with an explicitly specified
/// \c Domain parameter (i.e., <tt>as_child\<Domain\>(t)</tt>), or
/// without (i.e., <tt>as_child(t)</tt>). If no domain is
/// specified, \c default_domain is assumed.
///
/// If <tt>is_expr\<T\>::value</tt> is \c true, then the argument is
/// returned as-is. Otherwise, \c as_child() returns
/// <tt>Domain()(terminal\<T &\>::type::make(t))</tt>.
///
/// \param t The object to wrap.
template<typename T>
BOOST_FORCEINLINE
typename add_const<typename result_of::as_child<T, default_domain>::type>::type
as_child(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))
{
return default_domain::as_child<T>()(t);
}
/// \overload
///
template<typename T>
BOOST_FORCEINLINE
typename add_const<typename result_of::as_child<T const, default_domain>::type>::type
as_child(T const &t)
{
return default_domain::as_child<T const>()(t);
}
/// \overload
///
template<typename Domain, typename T>
BOOST_FORCEINLINE
typename add_const<typename result_of::as_child<T, Domain>::type>::type
as_child(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))
{
return typename Domain::template as_child<T>()(t);
}
/// \overload
///
template<typename Domain, typename T>
BOOST_FORCEINLINE
typename add_const<typename result_of::as_child<T const, Domain>::type>::type
as_child(T const &t)
{
return typename Domain::template as_child<T const>()(t);
}
/// \brief Return the Nth child of the specified Proto expression.
///
/// Return the Nth child of the specified Proto expression. If
/// \c N is not specified, as in \c child(expr), then \c N is assumed
/// to be <tt>mpl::long_\<0\></tt>. The child is returned by
/// reference.
///
/// \param expr The Proto expression.
/// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.
/// \pre \c N is an MPL Integral Constant.
/// \pre <tt>N::value \< Expr::proto_arity::value</tt>
/// \throw nothrow
/// \return A reference to the Nth child
template<typename N, typename Expr>
BOOST_FORCEINLINE
typename result_of::child<Expr &, N>::type
child(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))
{
return result_of::child<Expr &, N>::call(e);
}
/// \overload
///
template<typename N, typename Expr>
BOOST_FORCEINLINE
typename result_of::child<Expr const &, N>::type
child(Expr const &e)
{
return result_of::child<Expr const &, N>::call(e);
}
/// \overload
///
template<typename Expr2>
BOOST_FORCEINLINE
typename detail::expr_traits<typename Expr2::proto_base_expr::proto_child0>::reference
child(Expr2 &expr2 BOOST_PROTO_DISABLE_IF_IS_CONST(Expr2))
{
return expr2.proto_base().child0;
}
/// \overload
///
template<typename Expr2>
BOOST_FORCEINLINE
typename detail::expr_traits<typename Expr2::proto_base_expr::proto_child0>::const_reference
child(Expr2 const &expr2)
{
return expr2.proto_base().child0;
}
/// \brief Return the Nth child of the specified Proto expression.
///
/// Return the Nth child of the specified Proto expression. The child
/// is returned by reference.
///
/// \param expr The Proto expression.
/// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.
/// \pre <tt>N \< Expr::proto_arity::value</tt>
/// \throw nothrow
/// \return A reference to the Nth child
template<long N, typename Expr>
BOOST_FORCEINLINE
typename result_of::child_c<Expr &, N>::type
child_c(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))
{
return result_of::child_c<Expr &, N>::call(e);
}
/// \overload
///
template<long N, typename Expr>
BOOST_FORCEINLINE
typename result_of::child_c<Expr const &, N>::type
child_c(Expr const &e)
{
return result_of::child_c<Expr const &, N>::call(e);
}
/// \brief Return the value stored within the specified Proto
/// terminal expression.
///
/// Return the value stored within the specified Proto
/// terminal expression. The value is returned by
/// reference.
///
/// \param expr The Proto terminal expression.
/// \pre <tt>N::value == 0</tt>
/// \throw nothrow
/// \return A reference to the terminal's value
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::value<Expr &>::type
value(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))
{
return e.proto_base().child0;
}
/// \overload
///
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::value<Expr const &>::type
value(Expr const &e)
{
return e.proto_base().child0;
}
/// \brief Return the left child of the specified binary Proto
/// expression.
///
/// Return the left child of the specified binary Proto expression. The
/// child is returned by reference.
///
/// \param expr The Proto expression.
/// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.
/// \pre <tt>2 == Expr::proto_arity::value</tt>
/// \throw nothrow
/// \return A reference to the left child
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::left<Expr &>::type
left(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))
{
return e.proto_base().child0;
}
/// \overload
///
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::left<Expr const &>::type
left(Expr const &e)
{
return e.proto_base().child0;
}
/// \brief Return the right child of the specified binary Proto
/// expression.
///
/// Return the right child of the specified binary Proto expression. The
/// child is returned by reference.
///
/// \param expr The Proto expression.
/// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.
/// \pre <tt>2 == Expr::proto_arity::value</tt>
/// \throw nothrow
/// \return A reference to the right child
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::right<Expr &>::type
right(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))
{
return e.proto_base().child1;
}
/// \overload
///
template<typename Expr>
BOOST_FORCEINLINE
typename result_of::right<Expr const &>::type
right(Expr const &e)
{
return e.proto_base().child1;
}
/// INTERNAL ONLY
///
template<typename Domain>
struct is_callable<functional::as_expr<Domain> >
: mpl::true_
{};
/// INTERNAL ONLY
///
template<typename Domain>
struct is_callable<functional::as_child<Domain> >
: mpl::true_
{};
/// INTERNAL ONLY
///
template<long N>
struct is_callable<functional::child_c<N> >
: mpl::true_
{};
/// INTERNAL ONLY
///
template<typename N>
struct is_callable<functional::child<N> >
: mpl::true_
{};
}}
#if defined(_MSC_VER)
# pragma warning(pop)
#endif
#endif