verdnatura-chat/ios/Pods/Flipper-Folly/folly/gen/Base.h

853 lines
20 KiB
C
Raw Normal View History

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#define FOLLY_GEN_BASE_H_
#include <algorithm>
#include <functional>
#include <memory>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
#include <folly/Conv.h>
#include <folly/Optional.h>
#include <folly/Range.h>
#include <folly/Utility.h>
#include <folly/gen/Core.h>
/**
* Generator-based Sequence Comprehensions in C++, akin to C#'s LINQ
* @author Tom Jackson <tjackson@fb.com>
*
* This library makes it possible to write declarative comprehensions for
* processing sequences of values efficiently in C++. The operators should be
* familiar to those with experience in functional programming, and the
* performance will be virtually identical to the equivalent, boilerplate C++
* implementations.
*
* Generator objects may be created from either an stl-like container (anything
* supporting begin() and end()), from sequences of values, or from another
* generator (see below). To create a generator that pulls values from a vector,
* for example, one could write:
*
* vector<string> names { "Jack", "Jill", "Sara", "Tom" };
* auto gen = from(names);
*
* Generators are composed by building new generators out of old ones through
* the use of operators. These are reminiscent of shell pipelines, and afford
* similar composition. Lambda functions are used liberally to describe how to
* handle individual values:
*
* auto lengths = gen
* | mapped([](const fbstring& name) { return name.size(); });
*
* Generators are lazy; they don't actually perform any work until they need to.
* As an example, the 'lengths' generator (above) won't actually invoke the
* provided lambda until values are needed:
*
* auto lengthVector = lengths | as<std::vector>();
* auto totalLength = lengths | sum;
*
* 'auto' is useful in here because the actual types of the generators objects
* are usually complicated and implementation-sensitive.
*
* If a simpler type is desired (for returning, as an example), VirtualGen<T>
* may be used to wrap the generator in a polymorphic wrapper:
*
* VirtualGen<float> powersOfE() {
* return seq(1) | mapped(&expf);
* }
*
* To learn more about this library, including the use of infinite generators,
* see the examples in the comments, or the docs (coming soon).
*/
namespace folly {
namespace gen {
class Less {
public:
template <class First, class Second>
auto operator()(const First& first, const Second& second) const
-> decltype(first < second) {
return first < second;
}
};
class Greater {
public:
template <class First, class Second>
auto operator()(const First& first, const Second& second) const
-> decltype(first > second) {
return first > second;
}
};
template <int n>
class Get {
public:
template <class Value>
auto operator()(Value&& value) const
-> decltype(std::get<n>(std::forward<Value>(value))) {
return std::get<n>(std::forward<Value>(value));
}
};
template <class Class, class Result>
class MemberFunction {
public:
typedef Result (Class::*MemberPtr)();
private:
MemberPtr member_;
public:
explicit MemberFunction(MemberPtr member) : member_(member) {}
Result operator()(Class&& x) const {
return (x.*member_)();
}
Result operator()(Class& x) const {
return (x.*member_)();
}
Result operator()(Class* x) const {
return (x->*member_)();
}
};
template <class Class, class Result>
class ConstMemberFunction {
public:
typedef Result (Class::*MemberPtr)() const;
private:
MemberPtr member_;
public:
explicit ConstMemberFunction(MemberPtr member) : member_(member) {}
Result operator()(const Class& x) const {
return (x.*member_)();
}
Result operator()(const Class* x) const {
return (x->*member_)();
}
};
template <class Class, class FieldType>
class Field {
public:
typedef FieldType Class::*FieldPtr;
private:
FieldPtr field_;
public:
explicit Field(FieldPtr field) : field_(field) {}
const FieldType& operator()(const Class& x) const {
return x.*field_;
}
const FieldType& operator()(const Class* x) const {
return x->*field_;
}
FieldType& operator()(Class& x) const {
return x.*field_;
}
FieldType& operator()(Class* x) const {
return x->*field_;
}
FieldType&& operator()(Class&& x) const {
return std::move(x.*field_);
}
};
class Move {
public:
template <class Value>
auto operator()(Value&& value) const
-> decltype(std::move(std::forward<Value>(value))) {
return std::move(std::forward<Value>(value));
}
};
/**
* Class and helper function for negating a boolean Predicate
*/
template <class Predicate>
class Negate {
Predicate pred_;
public:
Negate() = default;
explicit Negate(Predicate pred) : pred_(std::move(pred)) {}
template <class Arg>
bool operator()(Arg&& arg) const {
return !pred_(std::forward<Arg>(arg));
}
};
template <class Predicate>
Negate<Predicate> negate(Predicate pred) {
return Negate<Predicate>(std::move(pred));
}
template <class Dest>
class Cast {
public:
template <class Value>
Dest operator()(Value&& value) const {
return Dest(std::forward<Value>(value));
}
};
template <class Dest>
class To {
public:
template <class Value>
Dest operator()(Value&& value) const {
return ::folly::to<Dest>(std::forward<Value>(value));
}
};
template <class Dest>
class TryTo {
public:
template <class Value>
Expected<Dest, ConversionCode> operator()(Value&& value) const {
return ::folly::tryTo<Dest>(std::forward<Value>(value));
}
};
// Specialization to allow String->StringPiece conversion
template <>
class To<StringPiece> {
public:
StringPiece operator()(StringPiece src) const {
return src;
}
};
template <class Key, class Value>
class Group;
namespace detail {
template <class Self>
struct FBounded;
/*
* Type Traits
*/
template <class Container>
struct ValueTypeOfRange {
public:
using RefType = decltype(*std::begin(std::declval<Container&>()));
using StorageType = typename std::decay<RefType>::type;
};
/*
* Sources
*/
template <
class Container,
class Value = typename ValueTypeOfRange<Container>::RefType>
class ReferencedSource;
template <
class Value,
class Container = std::vector<typename std::decay<Value>::type>>
class CopiedSource;
template <class Value, class SequenceImpl>
class Sequence;
template <class Value>
class RangeImpl;
template <class Value, class Distance>
class RangeWithStepImpl;
template <class Value>
class SeqImpl;
template <class Value, class Distance>
class SeqWithStepImpl;
template <class Value>
class InfiniteImpl;
template <class Value, class Source>
class Yield;
template <class Value>
class Empty;
template <class Value>
class SingleReference;
template <class Value>
class SingleCopy;
/*
* Operators
*/
template <class Predicate>
class Map;
template <class Predicate>
class Filter;
template <class Predicate>
class Until;
class Take;
class Stride;
template <class Rand>
class Sample;
class Skip;
template <class Visitor>
class Visit;
template <class Selector, class Comparer = Less>
class Order;
template <class Selector>
class GroupBy;
template <class Selector>
class GroupByAdjacent;
template <class Selector>
class Distinct;
template <class Operators>
class Composer;
template <class Expected>
class TypeAssertion;
class Concat;
class RangeConcat;
template <bool forever>
class Cycle;
class Batch;
class Window;
class Dereference;
class Indirect;
/*
* Sinks
*/
template <class Seed, class Fold>
class FoldLeft;
class First;
template <bool result>
class IsEmpty;
template <class Reducer>
class Reduce;
class Sum;
template <class Selector, class Comparer>
class Min;
template <class Container>
class Collect;
template <
template <class, class> class Collection = std::vector,
template <class> class Allocator = std::allocator>
class CollectTemplate;
template <class Collection>
class Append;
template <class Value>
struct GeneratorBuilder;
template <class Needle>
class Contains;
template <class Exception, class ErrorHandler>
class GuardImpl;
template <class T>
class UnwrapOr;
class Unwrap;
} // namespace detail
/**
* Polymorphic wrapper
**/
template <class Value>
class VirtualGen;
/*
* Source Factories
*/
template <
class Container,
class From = detail::ReferencedSource<const Container>>
From fromConst(const Container& source) {
return From(&source);
}
template <class Container, class From = detail::ReferencedSource<Container>>
From from(Container& source) {
return From(&source);
}
template <
class Container,
class Value = typename detail::ValueTypeOfRange<Container>::StorageType,
class CopyOf = detail::CopiedSource<Value>>
CopyOf fromCopy(Container&& source) {
return CopyOf(std::forward<Container>(source));
}
template <class Value, class From = detail::CopiedSource<Value>>
From from(std::initializer_list<Value> source) {
return From(source);
}
template <
class Container,
class From =
detail::CopiedSource<typename Container::value_type, Container>>
From from(Container&& source) {
return From(std::move(source));
}
template <
class Value,
class Impl = detail::RangeImpl<Value>,
class Gen = detail::Sequence<Value, Impl>>
Gen range(Value begin, Value end) {
return Gen{std::move(begin), Impl{std::move(end)}};
}
template <
class Value,
class Distance,
class Impl = detail::RangeWithStepImpl<Value, Distance>,
class Gen = detail::Sequence<Value, Impl>>
Gen range(Value begin, Value end, Distance step) {
return Gen{std::move(begin), Impl{std::move(end), std::move(step)}};
}
template <
class Value,
class Impl = detail::SeqImpl<Value>,
class Gen = detail::Sequence<Value, Impl>>
Gen seq(Value first, Value last) {
return Gen{std::move(first), Impl{std::move(last)}};
}
template <
class Value,
class Distance,
class Impl = detail::SeqWithStepImpl<Value, Distance>,
class Gen = detail::Sequence<Value, Impl>>
Gen seq(Value first, Value last, Distance step) {
return Gen{std::move(first), Impl{std::move(last), std::move(step)}};
}
template <
class Value,
class Impl = detail::InfiniteImpl<Value>,
class Gen = detail::Sequence<Value, Impl>>
Gen seq(Value first) {
return Gen{std::move(first), Impl{}};
}
template <class Value, class Source, class Yield = detail::Yield<Value, Source>>
Yield generator(Source&& source) {
return Yield(std::forward<Source>(source));
}
/*
* Create inline generator, used like:
*
* auto gen = GENERATOR(int) { yield(1); yield(2); };
*/
#define GENERATOR(TYPE) \
::folly::gen::detail::GeneratorBuilder<TYPE>() + [=](auto&& yield)
/*
* empty() - for producing empty sequences.
*/
template <class Value>
detail::Empty<Value> empty() {
return {};
}
template <
class Value,
class Just = typename std::conditional<
std::is_reference<Value>::value,
detail::SingleReference<typename std::remove_reference<Value>::type>,
detail::SingleCopy<Value>>::type>
Just just(Value&& value) {
return Just(std::forward<Value>(value));
}
/*
* Operator Factories
*/
template <class Predicate, class Map = detail::Map<Predicate>>
Map mapped(Predicate pred = Predicate()) {
return Map(std::move(pred));
}
template <class Predicate, class Map = detail::Map<Predicate>>
Map map(Predicate pred = Predicate()) {
return Map(std::move(pred));
}
/**
* mapOp - Given a generator of generators, maps the application of the given
* operator on to each inner gen. Especially useful in aggregating nested data
* structures:
*
* chunked(samples, 256)
* | mapOp(filter(sampleTest) | count)
* | sum;
*/
template <class Operator, class Map = detail::Map<detail::Composer<Operator>>>
Map mapOp(Operator op) {
return Map(detail::Composer<Operator>(std::move(op)));
}
/*
* member(...) - For extracting a member from each value.
*
* vector<string> strings = ...;
* auto sizes = from(strings) | member(&string::size);
*
* If a member is const overridden (like 'front()'), pass template parameter
* 'Const' to select the const version, or 'Mutable' to select the non-const
* version:
*
* auto heads = from(strings) | member<Const>(&string::front);
*/
enum MemberType {
Const,
Mutable,
};
/**
* These exist because MSVC has problems with expression SFINAE in templates
* assignment and comparisons don't work properly without being pulled out
* of the template declaration
*/
template <MemberType Constness>
struct ExprIsConst {
enum {
value = Constness == Const,
};
};
template <MemberType Constness>
struct ExprIsMutable {
enum {
value = Constness == Mutable,
};
};
template <
MemberType Constness = Const,
class Class,
class Return,
class Mem = ConstMemberFunction<Class, Return>,
class Map = detail::Map<Mem>>
typename std::enable_if<ExprIsConst<Constness>::value, Map>::type member(
Return (Class::*member)() const) {
return Map(Mem(member));
}
template <
MemberType Constness = Mutable,
class Class,
class Return,
class Mem = MemberFunction<Class, Return>,
class Map = detail::Map<Mem>>
typename std::enable_if<ExprIsMutable<Constness>::value, Map>::type member(
Return (Class::*member)()) {
return Map(Mem(member));
}
/*
* field(...) - For extracting a field from each value.
*
* vector<Item> items = ...;
* auto names = from(items) | field(&Item::name);
*
* Note that if the values of the generator are rvalues, any non-reference
* fields will be rvalues as well. As an example, the code below does not copy
* any strings, only moves them:
*
* auto namesVector = from(items)
* | move
* | field(&Item::name)
* | as<vector>();
*/
template <
class Class,
class FieldType,
class Field = Field<Class, FieldType>,
class Map = detail::Map<Field>>
Map field(FieldType Class::*field) {
return Map(Field(field));
}
template <class Predicate = Identity, class Filter = detail::Filter<Predicate>>
Filter filter(Predicate pred = Predicate()) {
return Filter(std::move(pred));
}
template <class Visitor = Ignore, class Visit = detail::Visit<Visitor>>
Visit visit(Visitor visitor = Visitor()) {
return Visit(std::move(visitor));
}
template <class Predicate = Identity, class Until = detail::Until<Predicate>>
Until until(Predicate pred = Predicate()) {
return Until(std::move(pred));
}
template <
class Predicate = Identity,
class TakeWhile = detail::Until<Negate<Predicate>>>
TakeWhile takeWhile(Predicate pred = Predicate()) {
return TakeWhile(Negate<Predicate>(std::move(pred)));
}
template <
class Selector = Identity,
class Comparer = Less,
class Order = detail::Order<Selector, Comparer>>
Order orderBy(Selector selector = Selector(), Comparer comparer = Comparer()) {
return Order(std::move(selector), std::move(comparer));
}
template <
class Selector = Identity,
class Order = detail::Order<Selector, Greater>>
Order orderByDescending(Selector selector = Selector()) {
return Order(std::move(selector));
}
template <class Selector = Identity, class GroupBy = detail::GroupBy<Selector>>
GroupBy groupBy(Selector selector = Selector()) {
return GroupBy(std::move(selector));
}
template <
class Selector = Identity,
class GroupByAdjacent = detail::GroupByAdjacent<Selector>>
GroupByAdjacent groupByAdjacent(Selector selector = Selector()) {
return GroupByAdjacent(std::move(selector));
}
template <
class Selector = Identity,
class Distinct = detail::Distinct<Selector>>
Distinct distinctBy(Selector selector = Selector()) {
return Distinct(std::move(selector));
}
template <int n, class Get = detail::Map<Get<n>>>
Get get() {
return Get();
}
// construct Dest from each value
template <class Dest, class Cast = detail::Map<Cast<Dest>>>
Cast eachAs() {
return Cast();
}
// call folly::to on each value
template <class Dest, class EachTo = detail::Map<To<Dest>>>
EachTo eachTo() {
return EachTo();
}
// call folly::tryTo on each value
template <class Dest, class EachTryTo = detail::Map<TryTo<Dest>>>
EachTryTo eachTryTo() {
return EachTryTo();
}
template <class Value>
detail::TypeAssertion<Value> assert_type() {
return {};
}
/*
* Sink Factories
*/
/**
* any() - For determining if any value in a sequence satisfies a predicate.
*
* The following is an example for checking if any computer is broken:
*
* bool schrepIsMad = from(computers) | any(isBroken);
*
* (because everyone knows Schrep hates broken computers).
*
* Note that if no predicate is provided, 'any()' checks if any of the values
* are true when cased to bool. To check if any of the scores are nonZero:
*
* bool somebodyScored = from(scores) | any();
*
* Note: Passing an empty sequence through 'any()' will always return false. In
* fact, 'any()' is equivilent to the composition of 'filter()' and 'notEmpty'.
*
* from(source) | any(pred) == from(source) | filter(pred) | notEmpty
*/
template <
class Predicate = Identity,
class Filter = detail::Filter<Predicate>,
class NotEmpty = detail::IsEmpty<false>,
class Composed = detail::Composed<Filter, NotEmpty>>
Composed any(Predicate pred = Predicate()) {
return Composed(Filter(std::move(pred)), NotEmpty());
}
/**
* all() - For determining whether all values in a sequence satisfy a predicate.
*
* The following is an example for checking if all members of a team are cool:
*
* bool isAwesomeTeam = from(team) | all(isCool);
*
* Note that if no predicate is provided, 'all()'' checks if all of the values
* are true when cased to bool.
* The following makes sure none of 'pointers' are nullptr:
*
* bool allNonNull = from(pointers) | all();
*
* Note: Passing an empty sequence through 'all()' will always return true. In
* fact, 'all()' is equivilent to the composition of 'filter()' with the
* reversed predicate and 'isEmpty'.
*
* from(source) | all(pred) == from(source) | filter(negate(pred)) | isEmpty
*/
template <
class Predicate = Identity,
class Filter = detail::Filter<Negate<Predicate>>,
class IsEmpty = detail::IsEmpty<true>,
class Composed = detail::Composed<Filter, IsEmpty>>
Composed all(Predicate pred = Predicate()) {
return Composed(Filter(std::move(negate(pred))), IsEmpty());
}
template <class Seed, class Fold, class FoldLeft = detail::FoldLeft<Seed, Fold>>
FoldLeft foldl(Seed seed = Seed(), Fold fold = Fold()) {
return FoldLeft(std::move(seed), std::move(fold));
}
template <class Reducer, class Reduce = detail::Reduce<Reducer>>
Reduce reduce(Reducer reducer = Reducer()) {
return Reduce(std::move(reducer));
}
template <class Selector = Identity, class Min = detail::Min<Selector, Less>>
Min minBy(Selector selector = Selector()) {
return Min(std::move(selector));
}
template <class Selector, class MaxBy = detail::Min<Selector, Greater>>
MaxBy maxBy(Selector selector = Selector()) {
return MaxBy(std::move(selector));
}
template <class Collection, class Collect = detail::Collect<Collection>>
Collect as() {
return Collect();
}
template <
template <class, class> class Container = std::vector,
template <class> class Allocator = std::allocator,
class Collect = detail::CollectTemplate<Container, Allocator>>
Collect as() {
return Collect();
}
template <class Collection, class Append = detail::Append<Collection>>
Append appendTo(Collection& collection) {
return Append(&collection);
}
template <
class Needle,
class Contains = detail::Contains<typename std::decay<Needle>::type>>
Contains contains(Needle&& needle) {
return Contains(std::forward<Needle>(needle));
}
template <
class Exception,
class ErrorHandler,
class GuardImpl =
detail::GuardImpl<Exception, typename std::decay<ErrorHandler>::type>>
GuardImpl guard(ErrorHandler&& handler) {
return GuardImpl(std::forward<ErrorHandler>(handler));
}
template <
class Fallback,
class UnwrapOr = detail::UnwrapOr<typename std::decay<Fallback>::type>>
UnwrapOr unwrapOr(Fallback&& fallback) {
return UnwrapOr(std::forward<Fallback>(fallback));
}
} // namespace gen
} // namespace folly
#include <folly/gen/Base-inl.h>