verdnatura-chat/ios/Pods/Folly/folly/container/EvictingCacheMap.h

566 lines
18 KiB
C
Raw Normal View History

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <algorithm>
#include <exception>
#include <functional>
#include <boost/intrusive/list.hpp>
#include <boost/intrusive/unordered_set.hpp>
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/utility.hpp>
#include <folly/lang/Exception.h>
namespace folly {
/**
* A general purpose LRU evicting cache. Designed to support constant time
* set/get operations. It maintains a doubly linked list of items that are
* threaded through an index (a hash map). The access ordered is maintained
* on the list by moving an element to the front of list on a get. New elements
* are added to the front of the list. The index size is set to half the
* capacity (setting capacity to 0 is a special case. see notes at the end of
* this section). So assuming uniform distribution of keys, set/get are both
* constant time operations.
*
* On reaching capacity limit, clearSize_ LRU items are evicted at a time. If
* a callback is specified with setPruneHook, it is invoked for each eviction.
*
* This is NOT a thread-safe implementation.
*
* Configurability: capacity of the cache, number of items to evict, eviction
* callback and the hasher to hash the keys can all be supplied by the caller.
*
* If at a given state, N1 - N6 are the nodes in MRU to LRU order and hashing
* to index keys as {(N1,N5)->H1, (N4,N2,N6)->H2, N3->Hi}, the datastructure
* layout is as below. N1 .. N6 is a list threaded through the hash.
* Assuming, each the number of nodes hashed to each index key is bounded, the
* following operations run in constant time.
* i) get computes the index key, walks the list of elements hashed to
* the key and moves it to the front of the list, if found.
* ii) set inserts a new node into the list and places the same node on to the
* list of elements hashing to the corresponding index key.
* ii) prune deletes nodes from the end of the list as well from the index.
*
* +----+ +----+ +----+
* | H1 | <-> | N1 | <-> | N5 |
* +----+ +----+ +----+
* ^ ^ ^
* | ___/ \
* | / \
* |_ /________ \___
* / | \
* / | \
* v v v
* +----+ +----+ +----+ +----+
* | H2 | <-> | N4 | <-> | N2 | <-> | N6 |
* +----+ +----+ +----+ +----+
* . ^ ^
* . | |
* . | |
* . | _____|
* . | /
* v v
* +----+ +----+
* | Hi | <-> | N3 |
* +----+ +----+
*
* N.B 1 : Changing the capacity with setMaxSize does not change the index size
* and it could end up in too many elements indexed to the same slot in index.
* The set/get performance will get worse in this case. So it is best to avoid
* resizing.
*
* N.B 2 : Setting capacity to 0, using setMaxSize or initialization, turns off
* evictions based on sizeof the cache making it an INFINITE size cache
* unless evictions of LRU items are triggered by calling prune() by clients
* (using their own eviction criteria).
*/
template <
class TKey,
class TValue,
class THash = std::hash<TKey>,
class TKeyEqual = std::equal_to<TKey>>
class EvictingCacheMap {
private:
// typedefs for brevity
struct Node;
struct KeyHasher;
struct KeyValueEqual;
typedef boost::intrusive::link_mode<boost::intrusive::safe_link> link_mode;
typedef boost::intrusive::unordered_set<
Node,
boost::intrusive::hash<KeyHasher>,
boost::intrusive::equal<KeyValueEqual>>
NodeMap;
typedef boost::intrusive::list<Node> NodeList;
typedef std::pair<const TKey, TValue> TPair;
public:
typedef std::function<void(TKey, TValue&&)> PruneHookCall;
// iterator base : returns TPair on dereference
template <typename Value, typename TIterator>
class iterator_base : public boost::iterator_adaptor<
iterator_base<Value, TIterator>,
TIterator,
Value,
boost::bidirectional_traversal_tag> {
public:
iterator_base() {}
explicit iterator_base(TIterator it)
: iterator_base::iterator_adaptor_(it) {}
template <
typename V,
typename I,
std::enable_if_t<
std::is_same<V const, Value>::value &&
std::is_convertible<I, TIterator>::value,
int> = 0>
/* implicit */ iterator_base(iterator_base<V, I> const& other)
: iterator_base::iterator_adaptor_(other.base()) {}
Value& dereference() const {
return this->base_reference()->pr;
}
};
// iterators
typedef iterator_base<TPair, typename NodeList::iterator> iterator;
typedef iterator_base<const TPair, typename NodeList::const_iterator>
const_iterator;
typedef iterator_base<TPair, typename NodeList::reverse_iterator>
reverse_iterator;
typedef iterator_base<const TPair, typename NodeList::const_reverse_iterator>
const_reverse_iterator;
// the default map typedefs
using key_type = TKey;
using mapped_type = TValue;
using hasher = THash;
/**
* Construct a EvictingCacheMap
* @param maxSize maximum size of the cache map. Once the map size exceeds
* maxSize, the map will begin to evict.
* @param clearSize the number of elements to clear at a time when the
* eviction size is reached.
*/
explicit EvictingCacheMap(
std::size_t maxSize,
std::size_t clearSize = 1,
const THash& keyHash = THash(),
const TKeyEqual& keyEqual = TKeyEqual())
: nIndexBuckets_(std::max(maxSize / 2, std::size_t(kMinNumIndexBuckets))),
indexBuckets_(new typename NodeMap::bucket_type[nIndexBuckets_]),
indexTraits_(indexBuckets_.get(), nIndexBuckets_),
keyHash_(keyHash),
keyEqual_(keyEqual),
index_(indexTraits_, keyHash_, keyEqual_),
maxSize_(maxSize),
clearSize_(clearSize) {}
EvictingCacheMap(const EvictingCacheMap&) = delete;
EvictingCacheMap& operator=(const EvictingCacheMap&) = delete;
EvictingCacheMap(EvictingCacheMap&&) = default;
EvictingCacheMap& operator=(EvictingCacheMap&&) = default;
~EvictingCacheMap() {
setPruneHook(nullptr);
// ignore any potential exceptions from pruneHook_
pruneWithFailSafeOption(size(), nullptr, true);
}
/**
* Adjust the max size of EvictingCacheMap. Note that this does not update
* nIndexBuckets_ accordingly. This API can cause performance to get very
* bad, e.g., the nIndexBuckets_ is still 100 after maxSize is updated to 1M.
*
* Calling this function with an arugment of 0 removes the limit on the cache
* size and elements are not evicted unless clients explicitly call prune.
*
* If you intend to resize dynamically using this, then picking an index size
* that works well and initializing with corresponding maxSize is the only
* reasonable option.
*
* @param maxSize new maximum size of the cache map.
* @param pruneHook callback to use on eviction.
*/
void setMaxSize(size_t maxSize, PruneHookCall pruneHook = nullptr) {
if (maxSize != 0 && maxSize < size()) {
// Prune the excess elements with our new constraints.
prune(std::max(size() - maxSize, clearSize_), pruneHook);
}
maxSize_ = maxSize;
}
size_t getMaxSize() const {
return maxSize_;
}
void setClearSize(size_t clearSize) {
clearSize_ = clearSize;
}
/**
* Check for existence of a specific key in the map. This operation has
* no effect on LRU order.
* @param key key to search for
* @return true if exists, false otherwise
*/
bool exists(const TKey& key) const {
return findInIndex(key) != index_.end();
}
/**
* Get the value associated with a specific key. This function always
* promotes a found value to the head of the LRU.
* @param key key associated with the value
* @return the value if it exists
* @throw std::out_of_range exception of the key does not exist
*/
TValue& get(const TKey& key) {
auto it = find(key);
if (it == end()) {
throw_exception<std::out_of_range>("Key does not exist");
}
return it->second;
}
/**
* Get the iterator associated with a specific key. This function always
* promotes a found value to the head of the LRU.
* @param key key to associate with value
* @return the iterator of the object (a std::pair of const TKey, TValue) or
* end() if it does not exist
*/
iterator find(const TKey& key) {
auto it = findInIndex(key);
if (it == index_.end()) {
return end();
}
lru_.erase(lru_.iterator_to(*it));
lru_.push_front(*it);
return iterator(lru_.iterator_to(*it));
}
/**
* Get the value associated with a specific key. This function never
* promotes a found value to the head of the LRU.
* @param key key associated with the value
* @return the value if it exists
* @throw std::out_of_range exception of the key does not exist
*/
const TValue& getWithoutPromotion(const TKey& key) const {
auto it = findWithoutPromotion(key);
if (it == end()) {
throw_exception<std::out_of_range>("Key does not exist");
}
return it->second;
}
TValue& getWithoutPromotion(const TKey& key) {
auto const& cThis = *this;
return const_cast<TValue&>(cThis.getWithoutPromotion(key));
}
/**
* Get the iterator associated with a specific key. This function never
* promotes a found value to the head of the LRU.
* @param key key to associate with value
* @return the iterator of the object (a std::pair of const TKey, TValue) or
* end() if it does not exist
*/
const_iterator findWithoutPromotion(const TKey& key) const {
auto it = findInIndex(key);
return (it == index_.end()) ? end() : const_iterator(lru_.iterator_to(*it));
}
iterator findWithoutPromotion(const TKey& key) {
auto it = findInIndex(key);
return (it == index_.end()) ? end() : iterator(lru_.iterator_to(*it));
}
/**
* Erase the key-value pair associated with key if it exists.
* @param key key associated with the value
* @return true if the key existed and was erased, else false
*/
bool erase(const TKey& key) {
auto it = findInIndex(key);
if (it != index_.end()) {
erase(const_iterator(lru_.iterator_to(*it)));
return true;
}
return false;
}
/**
* Erase the key-value pair associated with pos
* @param pos iterator to the element to be erased
* @return iterator to the following element or end() if pos was the last
* element
*/
iterator erase(const_iterator pos) {
auto* node = const_cast<Node*>(&(*pos.base()));
std::unique_ptr<Node> nptr(node);
index_.erase(index_.iterator_to(*node));
return iterator(lru_.erase(pos.base()));
}
/**
* Set a key-value pair in the dictionary
* @param key key to associate with value
* @param value value to associate with the key
* @param promote boolean flag indicating whether or not to move something
* to the front of an LRU. This only really matters if you're setting
* a value that already exists.
* @param pruneHook callback to use on eviction (if it occurs).
*/
void set(
const TKey& key,
TValue value,
bool promote = true,
PruneHookCall pruneHook = nullptr) {
auto it = findInIndex(key);
if (it != index_.end()) {
it->pr.second = std::move(value);
if (promote) {
lru_.erase(lru_.iterator_to(*it));
lru_.push_front(*it);
}
} else {
auto node = new Node(key, std::move(value));
index_.insert(*node);
lru_.push_front(*node);
// no evictions if maxSize_ is 0 i.e. unlimited capacity
if (maxSize_ > 0 && size() > maxSize_) {
prune(clearSize_, pruneHook);
}
}
}
/**
* Insert a new key-value pair in the dictionary if no element exists for key
* @param key key to associate with value
* @param value value to associate with the key
* @param pruneHook callback to use on eviction (if it occurs).
* @return a pair consisting of an iterator to the inserted element (or to the
* element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool>
insert(const TKey& key, TValue value, PruneHookCall pruneHook = nullptr) {
auto node = std::make_unique<Node>(key, std::move(value));
auto pair = index_.insert(*node);
if (pair.second) {
lru_.push_front(*node);
node.release();
// no evictions if maxSize_ is 0 i.e. unlimited capacity
if (maxSize_ > 0 && size() > maxSize_) {
prune(clearSize_, pruneHook);
}
}
return std::make_pair(iterator(lru_.iterator_to(*pair.first)), pair.second);
}
/**
* Get the number of elements in the dictionary
* @return the size of the dictionary
*/
std::size_t size() const {
return index_.size();
}
/**
* Typical empty function
* @return true if empty, false otherwise
*/
bool empty() const {
return index_.empty();
}
void clear(PruneHookCall pruneHook = nullptr) {
prune(size(), pruneHook);
}
/**
* Set the prune hook, which is the function invoked on the key and value
* on each eviction. Will throw If the pruneHook throws, unless the
* EvictingCacheMap object is being destroyed in which case it will
* be ignored.
* @param pruneHook new callback to use on eviction.
* @param promote boolean flag indicating whether or not to move something
* to the front of an LRU.
* @return the iterator of the object (a std::pair of const TKey, TValue) or
* end() if it does not exist
*/
void setPruneHook(PruneHookCall pruneHook) {
pruneHook_ = pruneHook;
}
/**
* Prune the minimum of pruneSize and size() from the back of the LRU.
* Will throw if pruneHook throws.
* @param pruneSize minimum number of elements to prune
* @param pruneHook a custom pruneHook function
*/
void prune(std::size_t pruneSize, PruneHookCall pruneHook = nullptr) {
// do not swallow exceptions for prunes not triggered from destructor
pruneWithFailSafeOption(pruneSize, pruneHook, false);
}
// Iterators and such
iterator begin() {
return iterator(lru_.begin());
}
iterator end() {
return iterator(lru_.end());
}
const_iterator begin() const {
return const_iterator(lru_.begin());
}
const_iterator end() const {
return const_iterator(lru_.end());
}
const_iterator cbegin() const {
return const_iterator(lru_.cbegin());
}
const_iterator cend() const {
return const_iterator(lru_.cend());
}
reverse_iterator rbegin() {
return reverse_iterator(lru_.rbegin());
}
reverse_iterator rend() {
return reverse_iterator(lru_.rend());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(lru_.rbegin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(lru_.rend());
}
const_reverse_iterator crbegin() const {
return const_reverse_iterator(lru_.crbegin());
}
const_reverse_iterator crend() const {
return const_reverse_iterator(lru_.crend());
}
private:
struct Node : public boost::intrusive::unordered_set_base_hook<link_mode>,
public boost::intrusive::list_base_hook<link_mode> {
Node(const TKey& key, TValue&& value)
: pr(std::make_pair(key, std::move(value))) {}
TPair pr;
};
struct KeyHasher {
KeyHasher(const THash& keyHash) : hash(keyHash) {}
std::size_t operator()(const Node& node) const {
return hash(node.pr.first);
}
std::size_t operator()(const TKey& key) const {
return hash(key);
}
THash hash;
};
struct KeyValueEqual {
KeyValueEqual(const TKeyEqual& keyEqual) : equal(keyEqual) {}
bool operator()(const TKey& lhs, const Node& rhs) const {
return equal(lhs, rhs.pr.first);
}
bool operator()(const Node& lhs, const TKey& rhs) const {
return equal(lhs.pr.first, rhs);
}
bool operator()(const Node& lhs, const Node& rhs) const {
return equal(lhs.pr.first, rhs.pr.first);
}
TKeyEqual equal;
};
/**
* Get the iterator in in the index associated with a specific key. This is
* merely a search in the index and does not promote the object.
* @param key key to associate with value
* @return the NodeMap::iterator to the Node containing the object
* (a std::pair of const TKey, TValue) or index_.end() if it does not exist
*/
typename NodeMap::iterator findInIndex(const TKey& key) {
return index_.find(key, KeyHasher(keyHash_), KeyValueEqual(keyEqual_));
}
typename NodeMap::const_iterator findInIndex(const TKey& key) const {
return index_.find(key, KeyHasher(keyHash_), KeyValueEqual(keyEqual_));
}
/**
* Prune the minimum of pruneSize and size() from the back of the LRU.
* @param pruneSize minimum number of elements to prune
* @param pruneHook a custom pruneHook function
* @param failSafe true if exceptions are to ignored, false by default
*/
void pruneWithFailSafeOption(
std::size_t pruneSize,
PruneHookCall pruneHook,
bool failSafe) {
auto& ph = (nullptr == pruneHook) ? pruneHook_ : pruneHook;
for (std::size_t i = 0; i < pruneSize && !lru_.empty(); i++) {
auto* node = &(*lru_.rbegin());
std::unique_ptr<Node> nptr(node);
lru_.erase(lru_.iterator_to(*node));
index_.erase(index_.iterator_to(*node));
if (ph) {
try {
ph(node->pr.first, std::move(node->pr.second));
} catch (...) {
if (!failSafe) {
throw;
}
}
}
}
}
static const std::size_t kMinNumIndexBuckets = 100;
PruneHookCall pruneHook_;
std::size_t nIndexBuckets_;
std::unique_ptr<typename NodeMap::bucket_type[]> indexBuckets_;
typename NodeMap::bucket_traits indexTraits_;
THash keyHash_;
TKeyEqual keyEqual_;
NodeMap index_;
NodeList lru_;
std::size_t maxSize_;
std::size_t clearSize_;
};
} // namespace folly