verdnatura-chat/ios/Pods/boost-for-react-native/boost/functional.hpp

549 lines
19 KiB
C++
Raw Normal View History

// ------------------------------------------------------------------------------
// Copyright (c) 2000 Cadenza New Zealand Ltd
// Distributed under the Boost Software License, Version 1.0. (See accompany-
// ing file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// ------------------------------------------------------------------------------
// Boost functional.hpp header file
// See http://www.boost.org/libs/functional for documentation.
// ------------------------------------------------------------------------------
// $Id$
// ------------------------------------------------------------------------------
#ifndef BOOST_FUNCTIONAL_HPP
#define BOOST_FUNCTIONAL_HPP
#include <boost/config.hpp>
#include <boost/call_traits.hpp>
#include <functional>
namespace boost
{
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// --------------------------------------------------------------------------
// The following traits classes allow us to avoid the need for ptr_fun
// because the types of arguments and the result of a function can be
// deduced.
//
// In addition to the standard types defined in unary_function and
// binary_function, we add
//
// - function_type, the type of the function or function object itself.
//
// - param_type, the type that should be used for passing the function or
// function object as an argument.
// --------------------------------------------------------------------------
namespace detail
{
template <class Operation>
struct unary_traits_imp;
template <class Operation>
struct unary_traits_imp<Operation*>
{
typedef Operation function_type;
typedef const function_type & param_type;
typedef typename Operation::result_type result_type;
typedef typename Operation::argument_type argument_type;
};
template <class R, class A>
struct unary_traits_imp<R(*)(A)>
{
typedef R (*function_type)(A);
typedef R (*param_type)(A);
typedef R result_type;
typedef A argument_type;
};
template <class Operation>
struct binary_traits_imp;
template <class Operation>
struct binary_traits_imp<Operation*>
{
typedef Operation function_type;
typedef const function_type & param_type;
typedef typename Operation::result_type result_type;
typedef typename Operation::first_argument_type first_argument_type;
typedef typename Operation::second_argument_type second_argument_type;
};
template <class R, class A1, class A2>
struct binary_traits_imp<R(*)(A1,A2)>
{
typedef R (*function_type)(A1,A2);
typedef R (*param_type)(A1,A2);
typedef R result_type;
typedef A1 first_argument_type;
typedef A2 second_argument_type;
};
} // namespace detail
template <class Operation>
struct unary_traits
{
typedef typename detail::unary_traits_imp<Operation*>::function_type function_type;
typedef typename detail::unary_traits_imp<Operation*>::param_type param_type;
typedef typename detail::unary_traits_imp<Operation*>::result_type result_type;
typedef typename detail::unary_traits_imp<Operation*>::argument_type argument_type;
};
template <class R, class A>
struct unary_traits<R(*)(A)>
{
typedef R (*function_type)(A);
typedef R (*param_type)(A);
typedef R result_type;
typedef A argument_type;
};
template <class Operation>
struct binary_traits
{
typedef typename detail::binary_traits_imp<Operation*>::function_type function_type;
typedef typename detail::binary_traits_imp<Operation*>::param_type param_type;
typedef typename detail::binary_traits_imp<Operation*>::result_type result_type;
typedef typename detail::binary_traits_imp<Operation*>::first_argument_type first_argument_type;
typedef typename detail::binary_traits_imp<Operation*>::second_argument_type second_argument_type;
};
template <class R, class A1, class A2>
struct binary_traits<R(*)(A1,A2)>
{
typedef R (*function_type)(A1,A2);
typedef R (*param_type)(A1,A2);
typedef R result_type;
typedef A1 first_argument_type;
typedef A2 second_argument_type;
};
#else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// --------------------------------------------------------------------------
// If we have no partial specialisation available, decay to a situation
// that is no worse than in the Standard, i.e., ptr_fun will be required.
// --------------------------------------------------------------------------
template <class Operation>
struct unary_traits
{
typedef Operation function_type;
typedef const Operation& param_type;
typedef typename Operation::result_type result_type;
typedef typename Operation::argument_type argument_type;
};
template <class Operation>
struct binary_traits
{
typedef Operation function_type;
typedef const Operation & param_type;
typedef typename Operation::result_type result_type;
typedef typename Operation::first_argument_type first_argument_type;
typedef typename Operation::second_argument_type second_argument_type;
};
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// --------------------------------------------------------------------------
// unary_negate, not1
// --------------------------------------------------------------------------
template <class Predicate>
class unary_negate
: public std::unary_function<typename unary_traits<Predicate>::argument_type,bool>
{
public:
explicit unary_negate(typename unary_traits<Predicate>::param_type x)
:
pred(x)
{}
bool operator()(typename call_traits<typename unary_traits<Predicate>::argument_type>::param_type x) const
{
return !pred(x);
}
private:
typename unary_traits<Predicate>::function_type pred;
};
template <class Predicate>
unary_negate<Predicate> not1(const Predicate &pred)
{
// The cast is to placate Borland C++Builder in certain circumstances.
// I don't think it should be necessary.
return unary_negate<Predicate>((typename unary_traits<Predicate>::param_type)pred);
}
template <class Predicate>
unary_negate<Predicate> not1(Predicate &pred)
{
return unary_negate<Predicate>(pred);
}
// --------------------------------------------------------------------------
// binary_negate, not2
// --------------------------------------------------------------------------
template <class Predicate>
class binary_negate
: public std::binary_function<typename binary_traits<Predicate>::first_argument_type,
typename binary_traits<Predicate>::second_argument_type,
bool>
{
public:
explicit binary_negate(typename binary_traits<Predicate>::param_type x)
:
pred(x)
{}
bool operator()(typename call_traits<typename binary_traits<Predicate>::first_argument_type>::param_type x,
typename call_traits<typename binary_traits<Predicate>::second_argument_type>::param_type y) const
{
return !pred(x,y);
}
private:
typename binary_traits<Predicate>::function_type pred;
};
template <class Predicate>
binary_negate<Predicate> not2(const Predicate &pred)
{
// The cast is to placate Borland C++Builder in certain circumstances.
// I don't think it should be necessary.
return binary_negate<Predicate>((typename binary_traits<Predicate>::param_type)pred);
}
template <class Predicate>
binary_negate<Predicate> not2(Predicate &pred)
{
return binary_negate<Predicate>(pred);
}
// --------------------------------------------------------------------------
// binder1st, bind1st
// --------------------------------------------------------------------------
template <class Operation>
class binder1st
: public std::unary_function<typename binary_traits<Operation>::second_argument_type,
typename binary_traits<Operation>::result_type>
{
public:
binder1st(typename binary_traits<Operation>::param_type x,
typename call_traits<typename binary_traits<Operation>::first_argument_type>::param_type y)
:
op(x), value(y)
{}
typename binary_traits<Operation>::result_type
operator()(typename call_traits<typename binary_traits<Operation>::second_argument_type>::param_type x) const
{
return op(value, x);
}
protected:
typename binary_traits<Operation>::function_type op;
typename binary_traits<Operation>::first_argument_type value;
};
template <class Operation>
inline binder1st<Operation> bind1st(const Operation &op,
typename call_traits<
typename binary_traits<Operation>::first_argument_type
>::param_type x)
{
// The cast is to placate Borland C++Builder in certain circumstances.
// I don't think it should be necessary.
return binder1st<Operation>((typename binary_traits<Operation>::param_type)op, x);
}
template <class Operation>
inline binder1st<Operation> bind1st(Operation &op,
typename call_traits<
typename binary_traits<Operation>::first_argument_type
>::param_type x)
{
return binder1st<Operation>(op, x);
}
// --------------------------------------------------------------------------
// binder2nd, bind2nd
// --------------------------------------------------------------------------
template <class Operation>
class binder2nd
: public std::unary_function<typename binary_traits<Operation>::first_argument_type,
typename binary_traits<Operation>::result_type>
{
public:
binder2nd(typename binary_traits<Operation>::param_type x,
typename call_traits<typename binary_traits<Operation>::second_argument_type>::param_type y)
:
op(x), value(y)
{}
typename binary_traits<Operation>::result_type
operator()(typename call_traits<typename binary_traits<Operation>::first_argument_type>::param_type x) const
{
return op(x, value);
}
protected:
typename binary_traits<Operation>::function_type op;
typename binary_traits<Operation>::second_argument_type value;
};
template <class Operation>
inline binder2nd<Operation> bind2nd(const Operation &op,
typename call_traits<
typename binary_traits<Operation>::second_argument_type
>::param_type x)
{
// The cast is to placate Borland C++Builder in certain circumstances.
// I don't think it should be necessary.
return binder2nd<Operation>((typename binary_traits<Operation>::param_type)op, x);
}
template <class Operation>
inline binder2nd<Operation> bind2nd(Operation &op,
typename call_traits<
typename binary_traits<Operation>::second_argument_type
>::param_type x)
{
return binder2nd<Operation>(op, x);
}
// --------------------------------------------------------------------------
// mem_fun, etc
// --------------------------------------------------------------------------
template <class S, class T>
class mem_fun_t : public std::unary_function<T*, S>
{
public:
explicit mem_fun_t(S (T::*p)())
:
ptr(p)
{}
S operator()(T* p) const
{
return (p->*ptr)();
}
private:
S (T::*ptr)();
};
template <class S, class T, class A>
class mem_fun1_t : public std::binary_function<T*, A, S>
{
public:
explicit mem_fun1_t(S (T::*p)(A))
:
ptr(p)
{}
S operator()(T* p, typename call_traits<A>::param_type x) const
{
return (p->*ptr)(x);
}
private:
S (T::*ptr)(A);
};
template <class S, class T>
class const_mem_fun_t : public std::unary_function<const T*, S>
{
public:
explicit const_mem_fun_t(S (T::*p)() const)
:
ptr(p)
{}
S operator()(const T* p) const
{
return (p->*ptr)();
}
private:
S (T::*ptr)() const;
};
template <class S, class T, class A>
class const_mem_fun1_t : public std::binary_function<const T*, A, S>
{
public:
explicit const_mem_fun1_t(S (T::*p)(A) const)
:
ptr(p)
{}
S operator()(const T* p, typename call_traits<A>::param_type x) const
{
return (p->*ptr)(x);
}
private:
S (T::*ptr)(A) const;
};
template<class S, class T>
inline mem_fun_t<S,T> mem_fun(S (T::*f)())
{
return mem_fun_t<S,T>(f);
}
template<class S, class T, class A>
inline mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A))
{
return mem_fun1_t<S,T,A>(f);
}
#ifndef BOOST_NO_POINTER_TO_MEMBER_CONST
template<class S, class T>
inline const_mem_fun_t<S,T> mem_fun(S (T::*f)() const)
{
return const_mem_fun_t<S,T>(f);
}
template<class S, class T, class A>
inline const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const)
{
return const_mem_fun1_t<S,T,A>(f);
}
#endif // BOOST_NO_POINTER_TO_MEMBER_CONST
// --------------------------------------------------------------------------
// mem_fun_ref, etc
// --------------------------------------------------------------------------
template <class S, class T>
class mem_fun_ref_t : public std::unary_function<T&, S>
{
public:
explicit mem_fun_ref_t(S (T::*p)())
:
ptr(p)
{}
S operator()(T& p) const
{
return (p.*ptr)();
}
private:
S (T::*ptr)();
};
template <class S, class T, class A>
class mem_fun1_ref_t : public std::binary_function<T&, A, S>
{
public:
explicit mem_fun1_ref_t(S (T::*p)(A))
:
ptr(p)
{}
S operator()(T& p, typename call_traits<A>::param_type x) const
{
return (p.*ptr)(x);
}
private:
S (T::*ptr)(A);
};
template <class S, class T>
class const_mem_fun_ref_t : public std::unary_function<const T&, S>
{
public:
explicit const_mem_fun_ref_t(S (T::*p)() const)
:
ptr(p)
{}
S operator()(const T &p) const
{
return (p.*ptr)();
}
private:
S (T::*ptr)() const;
};
template <class S, class T, class A>
class const_mem_fun1_ref_t : public std::binary_function<const T&, A, S>
{
public:
explicit const_mem_fun1_ref_t(S (T::*p)(A) const)
:
ptr(p)
{}
S operator()(const T& p, typename call_traits<A>::param_type x) const
{
return (p.*ptr)(x);
}
private:
S (T::*ptr)(A) const;
};
template<class S, class T>
inline mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)())
{
return mem_fun_ref_t<S,T>(f);
}
template<class S, class T, class A>
inline mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A))
{
return mem_fun1_ref_t<S,T,A>(f);
}
#ifndef BOOST_NO_POINTER_TO_MEMBER_CONST
template<class S, class T>
inline const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const)
{
return const_mem_fun_ref_t<S,T>(f);
}
template<class S, class T, class A>
inline const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const)
{
return const_mem_fun1_ref_t<S,T,A>(f);
}
#endif // BOOST_NO_POINTER_TO_MEMBER_CONST
// --------------------------------------------------------------------------
// ptr_fun
// --------------------------------------------------------------------------
template <class Arg, class Result>
class pointer_to_unary_function : public std::unary_function<Arg,Result>
{
public:
explicit pointer_to_unary_function(Result (*f)(Arg))
:
func(f)
{}
Result operator()(typename call_traits<Arg>::param_type x) const
{
return func(x);
}
private:
Result (*func)(Arg);
};
template <class Arg, class Result>
inline pointer_to_unary_function<Arg,Result> ptr_fun(Result (*f)(Arg))
{
return pointer_to_unary_function<Arg,Result>(f);
}
template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public std::binary_function<Arg1,Arg2,Result>
{
public:
explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2))
:
func(f)
{}
Result operator()(typename call_traits<Arg1>::param_type x, typename call_traits<Arg2>::param_type y) const
{
return func(x,y);
}
private:
Result (*func)(Arg1, Arg2);
};
template <class Arg1, class Arg2, class Result>
inline pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*f)(Arg1, Arg2))
{
return pointer_to_binary_function<Arg1,Arg2,Result>(f);
}
} // namespace boost
#endif