/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <array>
#include <atomic>
#include <cassert>
#include <cstddef>
#include <limits>
#include <folly/Portability.h>
namespace folly {
/**
* An atomic bitset of fixed size (specified at compile time).
* Formerly known as AtomicBitSet. It was renamed while fixing a bug
* to avoid any silent breakages during run time.
template <size_t N>
class ConcurrentBitSet {
public:
* Construct a ConcurrentBitSet; all bits are initially false.
ConcurrentBitSet();
ConcurrentBitSet(const ConcurrentBitSet&) = delete;
ConcurrentBitSet& operator=(const ConcurrentBitSet&) = delete;
* Set bit idx to true, using the given memory order. Returns the
* previous value of the bit.
* Note that the operation is a read-modify-write operation due to the use
* of fetch_or.
bool set(size_t idx, std::memory_order order = std::memory_order_seq_cst);
* Set bit idx to false, using the given memory order. Returns the
* of fetch_and.
bool reset(size_t idx, std::memory_order order = std::memory_order_seq_cst);
* Set bit idx to the given value, using the given memory order. Returns
* the previous value of the bit.
* of fetch_and or fetch_or.
* Yes, this is an overload of set(), to keep as close to std::bitset's
* interface as possible.
bool set(
size_t idx,
bool value,
std::memory_order order = std::memory_order_seq_cst);
* Read bit idx.
bool test(size_t idx, std::memory_order order = std::memory_order_seq_cst)
const;
* Same as test() with the default memory order.
bool operator[](size_t idx) const;
* Return the size of the bitset.
constexpr size_t size() const {
return N;
}
private:
// Pick the largest lock-free type available
#if (ATOMIC_LLONG_LOCK_FREE == 2)
typedef unsigned long long BlockType;
#elif (ATOMIC_LONG_LOCK_FREE == 2)
typedef unsigned long BlockType;
#else
// Even if not lock free, what can we do?
typedef unsigned int BlockType;
#endif
typedef std::atomic<BlockType> AtomicBlockType;
static constexpr size_t kBitsPerBlock =
std::numeric_limits<BlockType>::digits;
static constexpr size_t blockIndex(size_t bit) {
return bit / kBitsPerBlock;
static constexpr size_t bitOffset(size_t bit) {
return bit % kBitsPerBlock;
// avoid casts
static constexpr BlockType kOne = 1;
static constexpr size_t kNumBlocks = (N + kBitsPerBlock - 1) / kBitsPerBlock;
std::array<AtomicBlockType, kNumBlocks> data_;
};
// value-initialize to zero
inline ConcurrentBitSet<N>::ConcurrentBitSet() : data_() {}
inline bool ConcurrentBitSet<N>::set(size_t idx, std::memory_order order) {
assert(idx < N);
BlockType mask = kOne << bitOffset(idx);
return data_[blockIndex(idx)].fetch_or(mask, order) & mask;
inline bool ConcurrentBitSet<N>::reset(size_t idx, std::memory_order order) {
return data_[blockIndex(idx)].fetch_and(~mask, order) & mask;
inline bool
ConcurrentBitSet<N>::set(size_t idx, bool value, std::memory_order order) {
return value ? set(idx, order) : reset(idx, order);
inline bool ConcurrentBitSet<N>::test(size_t idx, std::memory_order order)
const {
return data_[blockIndex(idx)].load(order) & mask;
inline bool ConcurrentBitSet<N>::operator[](size_t idx) const {
return test(idx);
} // namespace folly