/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <thread>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <folly/ScopeGuard.h>
#include <folly/ThreadLocal.h>
#include <folly/detail/Iterators.h>
#include <folly/detail/Singleton.h>
#include <folly/detail/UniqueInstance.h>
#include <folly/functional/Invoke.h>
// we do not want to use FOLLY_TLS here for mobile
#if !FOLLY_MOBILE && defined(FOLLY_TLS)
#define FOLLY_STL_USE_FOLLY_TLS 1
#else
#undef FOLLY_STL_USE_FOLLY_TLS
#endif
namespace folly {
/// SingletonThreadLocal
///
/// Useful for a per-thread leaky-singleton model in libraries and applications.
/// By "leaky" it is meant that the T instances held by the instantiation
/// SingletonThreadLocal<T> will survive until their owning thread exits.
/// Therefore, they can safely be used before main() begins and after main()
/// ends, and they can also safely be used in an application that spawns many
/// temporary threads throughout its life.
/// Example:
/// struct UsefulButHasExpensiveCtor {
/// UsefulButHasExpensiveCtor(); // this is expensive
/// Result operator()(Arg arg);
/// };
/// Result useful(Arg arg) {
/// using Useful = UsefulButHasExpensiveCtor;
/// auto& useful = folly::SingletonThreadLocal<Useful>::get();
/// return useful(arg);
/// }
/// As an example use-case, the random generators in <random> are expensive to
/// construct. And their constructors are deterministic, but many cases require
/// that they be randomly seeded. So folly::Random makes good canonical uses of
/// folly::SingletonThreadLocal so that a seed is computed from the secure
/// random device once per thread, and the random generator is constructed with
/// the seed once per thread.
/// Keywords to help people find this class in search:
/// Thread Local Singleton ThreadLocalSingleton
template <
typename T,
typename Tag = detail::DefaultTag,
typename Make = detail::DefaultMake<T>,
typename TLTag = std::
conditional_t<std::is_same<Tag, detail::DefaultTag>::value, void, Tag>>
class SingletonThreadLocal {
private:
static detail::UniqueInstance unique;
struct Wrapper;
struct LocalCache {
Wrapper* cache;
};
static_assert(std::is_pod<LocalCache>::value, "non-pod");
struct LocalLifetime;
struct Wrapper {
using Object = invoke_result_t<Make>;
static_assert(std::is_convertible<Object&, T&>::value, "inconvertible");
using LocalCacheSet = std::unordered_set<LocalCache*>;
// keep as first field, to save 1 instr in the fast path
Object object{Make{}()};
// per-cache refcounts, the number of lifetimes tracking that cache
std::unordered_map<LocalCache*, size_t> caches;
// per-lifetime cache tracking; 1-M lifetimes may track 1-N caches
std::unordered_map<LocalLifetime*, LocalCacheSet> lifetimes;
/* implicit */ operator T&() {
return object;
}
~Wrapper() {
for (auto& kvp : caches) {
kvp.first->cache = nullptr;
using WrapperTL = ThreadLocal<Wrapper, TLTag>;
struct LocalLifetime {
~LocalLifetime() {
auto& wrapper = getWrapper();
auto& lifetimes = wrapper.lifetimes[this];
for (auto cache : lifetimes) {
auto const it = wrapper.caches.find(cache);
if (!--it->second) {
wrapper.caches.erase(it);
cache->cache = nullptr;
wrapper.lifetimes.erase(this);
void track(LocalCache& cache) {
cache.cache = &wrapper;
auto const inserted = wrapper.lifetimes[this].insert(&cache);
wrapper.caches[&cache] += inserted.second;
SingletonThreadLocal() = delete;
FOLLY_ALWAYS_INLINE static WrapperTL& getWrapperTL() {
return detail::createGlobal<WrapperTL, Tag>();
FOLLY_NOINLINE static Wrapper& getWrapper() {
(void)unique; // force the object not to be thrown out as unused
return *getWrapperTL();
#ifdef FOLLY_STL_USE_FOLLY_TLS
FOLLY_NOINLINE static Wrapper& getSlow(LocalCache& cache) {
if (threadlocal_detail::StaticMetaBase::dying()) {
return getWrapper();
static thread_local LocalLifetime lifetime;
lifetime.track(cache); // idempotent
return FOLLY_LIKELY(!!cache.cache) ? *cache.cache : getWrapper();
public:
FOLLY_EXPORT FOLLY_ALWAYS_INLINE static T& get() {
static thread_local LocalCache cache;
return FOLLY_LIKELY(!!cache.cache) ? *cache.cache : getSlow(cache);
class Accessor {
using Inner = typename WrapperTL::Accessor;
using IteratorBase = typename Inner::Iterator;
using IteratorTag = std::bidirectional_iterator_tag;
Inner inner_;
explicit Accessor(Inner inner) noexcept : inner_(std::move(inner)) {}
friend class SingletonThreadLocal<T, Tag, Make, TLTag>;
class Iterator
: public detail::
IteratorAdaptor<Iterator, IteratorBase, T, IteratorTag> {
using Super =
detail::IteratorAdaptor<Iterator, IteratorBase, T, IteratorTag>;
using Super::Super;
friend class Accessor;
T& dereference() const {
return const_cast<Iterator*>(this)->base()->object;
std::thread::id getThreadId() const {
return this->base().getThreadId();
uint64_t getOSThreadId() const {
return this->base().getOSThreadId();
Accessor(const Accessor&) = delete;
Accessor& operator=(const Accessor&) = delete;
Accessor(Accessor&&) = default;
Accessor& operator=(Accessor&&) = default;
Iterator begin() const {
return Iterator(inner_.begin());
Iterator end() const {
return Iterator(inner_.end());
// Must use a unique Tag, takes a lock that is one per Tag
static Accessor accessAllThreads() {
return Accessor(getWrapperTL().accessAllThreads());
template <typename T, typename Tag, typename Make, typename TLTag>
detail::UniqueInstance SingletonThreadLocal<T, Tag, Make, TLTag>::unique{
"folly::SingletonThreadLocal",
tag_t<T, Tag>{},
tag_t<Make, TLTag>{}};
} // namespace folly
/// FOLLY_DECLARE_REUSED
/// Useful for local variables of container types, where it is desired to avoid
/// the overhead associated with the local variable entering and leaving scope.
/// Rather, where it is desired that the memory be reused between invocations
/// of the same scope in the same thread rather than deallocated and reallocated
/// between invocations of the same scope in the same thread. Note that the
/// container will always be cleared between invocations; it is only the backing
/// memory allocation which is reused.
/// void traverse_perform(int root);
/// template <typename F>
/// void traverse_each_child_r(int root, F const&);
/// void traverse_depthwise(int root) {
/// // preserves some of the memory backing these per-thread data structures
/// FOLLY_DECLARE_REUSED(seen, std::unordered_set<int>);
/// FOLLY_DECLARE_REUSED(work, std::vector<int>);
/// // example algorithm that uses these per-thread data structures
/// work.push_back(root);
/// while (!work.empty()) {
/// root = work.back();
/// work.pop_back();
/// seen.insert(root);
/// traverse_perform(root);
/// traverse_each_child_r(root, [&](int item) {
/// if (!seen.count(item)) {
/// work.push_back(item);
/// });
#define FOLLY_DECLARE_REUSED(name, ...) \
struct __folly_reused_type_##name { \
__VA_ARGS__ object; \
}; \
auto& name = \
::folly::SingletonThreadLocal<__folly_reused_type_##name>::get().object; \
auto __folly_reused_g_##name = ::folly::makeGuard([&] { name.clear(); })