verdnatura-chat/ios/Pods/boost-for-react-native/boost/graph/graph_test.hpp

385 lines
14 KiB
C++
Raw Normal View History

//=======================================================================
// Copyright 2002 Indiana University.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_GRAPH_TEST_HPP
#define BOOST_GRAPH_TEST_HPP
#include <vector>
#include <boost/test/minimal.hpp>
#include <boost/graph/filtered_graph.hpp>
#include <boost/graph/iteration_macros.hpp>
#include <boost/graph/isomorphism.hpp>
#include <boost/graph/copy.hpp>
#include <boost/graph/graph_utility.hpp> // for connects
#include <boost/range.hpp>
#include <boost/range/algorithm/find_if.hpp>
// UNDER CONSTRUCTION
namespace boost {
template <typename Graph>
struct graph_test
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
typedef typename graph_traits<Graph>::edge_descriptor edge_t;
typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
typedef typename graph_traits<Graph>::degree_size_type deg_size_t;
typedef typename graph_traits<Graph>::edges_size_type e_size_t;
typedef typename graph_traits<Graph>::out_edge_iterator out_edge_iter;
typedef typename property_map<Graph, vertex_index_t>::type index_map_t;
typedef iterator_property_map<typename std::vector<vertex_t>::iterator,
index_map_t,vertex_t,vertex_t&> IsoMap;
struct ignore_vertex {
ignore_vertex() { }
ignore_vertex(vertex_t v) : v(v) { }
bool operator()(vertex_t x) const { return x != v; }
vertex_t v;
};
struct ignore_edge {
ignore_edge() { }
ignore_edge(edge_t e) : e(e) { }
bool operator()(edge_t x) const { return x != e; }
edge_t e;
};
struct ignore_edges {
ignore_edges(vertex_t s, vertex_t t, const Graph& g)
: s(s), t(t), g(g) { }
bool operator()(edge_t x) const {
return !(source(x, g) == s && target(x, g) == t);
}
vertex_t s; vertex_t t; const Graph& g;
};
//=========================================================================
// Traversal Operations
void test_incidence_graph
(const std::vector<vertex_t>& vertex_set,
const std::vector< std::pair<vertex_t, vertex_t> >& edge_set,
const Graph& g)
{
typedef typename std::vector<vertex_t>::const_iterator vertex_iter;
typedef typename std::vector< std::pair<vertex_t, vertex_t> >
::const_iterator edge_iter;
typedef typename graph_traits<Graph>::out_edge_iterator out_edge_iter;
for (vertex_iter ui = vertex_set.begin(); ui != vertex_set.end(); ++ui) {
vertex_t u = *ui;
std::vector<vertex_t> adj;
for (edge_iter e = edge_set.begin(); e != edge_set.end(); ++e)
if (e->first == u)
adj.push_back(e->second);
std::pair<out_edge_iter, out_edge_iter> p = out_edges(u, g);
BOOST_CHECK(out_degree(u, g) == adj.size());
BOOST_CHECK(deg_size_t(std::distance(p.first, p.second))
== out_degree(u, g));
for (; p.first != p.second; ++p.first) {
edge_t e = *p.first;
BOOST_CHECK(source(e, g) == u);
BOOST_CHECK(container_contains(adj, target(e, g)) == true);
}
}
}
void test_bidirectional_graph
(const std::vector<vertex_t>& vertex_set,
const std::vector< std::pair<vertex_t, vertex_t> >& edge_set,
const Graph& g)
{
typedef typename std::vector<vertex_t>::const_iterator vertex_iter;
typedef typename std::vector< std::pair<vertex_t, vertex_t> >
::const_iterator edge_iter;
typedef typename graph_traits<Graph>::in_edge_iterator in_edge_iter;
for (vertex_iter vi = vertex_set.begin(); vi != vertex_set.end(); ++vi) {
vertex_t v = *vi;
std::vector<vertex_t> inv_adj;
for (edge_iter e = edge_set.begin(); e != edge_set.end(); ++e)
if (e->second == v)
inv_adj.push_back(e->first);
std::pair<in_edge_iter, in_edge_iter> p = in_edges(v, g);
BOOST_CHECK(in_degree(v, g) == inv_adj.size());
BOOST_CHECK(deg_size_t(std::distance(p.first, p.second))
== in_degree(v, g));
for (; p.first != p.second; ++p.first) {
edge_t e = *p.first;
BOOST_CHECK(target(e, g) == v);
BOOST_CHECK(container_contains(inv_adj, source(e, g)) == true);
}
}
}
void test_adjacency_graph
(const std::vector<vertex_t>& vertex_set,
const std::vector< std::pair<vertex_t,vertex_t> >& edge_set,
const Graph& g)
{
typedef typename std::vector<vertex_t>::const_iterator vertex_iter;
typedef typename std::vector<std::pair<vertex_t,vertex_t> >
::const_iterator edge_iter;
typedef typename graph_traits<Graph>::adjacency_iterator adj_iter;
for (vertex_iter ui = vertex_set.begin(); ui != vertex_set.end(); ++ui) {
vertex_t u = *ui;
std::vector<vertex_t> adj;
for (edge_iter e = edge_set.begin(); e != edge_set.end(); ++e)
if (e->first == u)
adj.push_back(e->second);
std::pair<adj_iter, adj_iter> p = adjacent_vertices(u, g);
BOOST_CHECK(deg_size_t(std::distance(p.first, p.second)) == adj.size());
for (; p.first != p.second; ++p.first) {
vertex_t v = *p.first;
BOOST_CHECK(container_contains(adj, v) == true);
}
}
}
void test_vertex_list_graph
(const std::vector<vertex_t>& vertex_set, const Graph& g)
{
typedef typename graph_traits<Graph>::vertex_iterator v_iter;
std::pair<v_iter, v_iter> p = vertices(g);
BOOST_CHECK(num_vertices(g) == vertex_set.size());
v_size_t n = (size_t)std::distance(p.first, p.second);
BOOST_CHECK(n == num_vertices(g));
for (; p.first != p.second; ++p.first) {
vertex_t v = *p.first;
BOOST_CHECK(container_contains(vertex_set, v) == true);
}
}
void test_edge_list_graph
(const std::vector<vertex_t>& vertex_set,
const std::vector< std::pair<vertex_t, vertex_t> >& edge_set,
const Graph& g)
{
typedef typename graph_traits<Graph>::edge_iterator e_iter;
std::pair<e_iter, e_iter> p = edges(g);
BOOST_CHECK(num_edges(g) == edge_set.size());
e_size_t m = std::distance(p.first, p.second);
BOOST_CHECK(m == num_edges(g));
for (; p.first != p.second; ++p.first) {
edge_t e = *p.first;
BOOST_CHECK(find_if(edge_set, connects(source(e, g), target(e, g), g)) != boost::end(edge_set));
BOOST_CHECK(container_contains(vertex_set, source(e, g)) == true);
BOOST_CHECK(container_contains(vertex_set, target(e, g)) == true);
}
}
void test_adjacency_matrix
(const std::vector<vertex_t>& vertex_set,
const std::vector< std::pair<vertex_t, vertex_t> >& edge_set,
const Graph& g)
{
std::pair<edge_t, bool> p;
for (typename std::vector<std::pair<vertex_t, vertex_t> >
::const_iterator i = edge_set.begin();
i != edge_set.end(); ++i) {
p = edge(i->first, i->second, g);
BOOST_CHECK(p.second == true);
BOOST_CHECK(source(p.first, g) == i->first);
BOOST_CHECK(target(p.first, g) == i->second);
}
typename std::vector<vertex_t>::const_iterator j, k;
for (j = vertex_set.begin(); j != vertex_set.end(); ++j)
for (k = vertex_set.begin(); k != vertex_set.end(); ++k) {
p = edge(*j, *k, g);
if (p.second == true)
BOOST_CHECK(find_if(edge_set,
connects(source(p.first, g), target(p.first, g), g)) != boost::end(edge_set));
}
}
//=========================================================================
// Mutating Operations
void test_add_vertex(Graph& g)
{
Graph cpy;
std::vector<vertex_t> iso_vec(num_vertices(g));
IsoMap iso_map(iso_vec.begin(), get(vertex_index, g));
copy_graph(g, cpy, orig_to_copy(iso_map));
BOOST_CHECK((verify_isomorphism(g, cpy, iso_map)));
vertex_t v = add_vertex(g);
BOOST_CHECK(num_vertices(g) == num_vertices(cpy) + 1);
BOOST_CHECK(out_degree(v, g) == 0);
// Make sure the rest of the graph stayed the same
BOOST_CHECK((verify_isomorphism
(make_filtered_graph(g, keep_all(), ignore_vertex(v)), cpy,
iso_map)));
}
void test_add_edge(vertex_t u, vertex_t v, Graph& g)
{
Graph cpy;
std::vector<vertex_t> iso_vec(num_vertices(g));
IsoMap iso_map(iso_vec.begin(), get(vertex_index, g));
copy_graph(g, cpy, orig_to_copy(iso_map));
bool parallel_edge_exists = container_contains(adjacent_vertices(u, g), v);
std::pair<edge_t, bool> p = add_edge(u, v, g);
edge_t e = p.first;
bool added = p.second;
if (is_undirected(g) && u == v) // self edge
BOOST_CHECK(added == false);
else if (parallel_edge_exists)
BOOST_CHECK(allows_parallel_edges(g) && added == true
|| !allows_parallel_edges(g) && added == false);
else
BOOST_CHECK(added == true);
if (p.second == true) { // edge added
BOOST_CHECK(num_edges(g) == num_edges(cpy) + 1);
BOOST_CHECK(container_contains(out_edges(u, g), e) == true);
BOOST_CHECK((verify_isomorphism
(make_filtered_graph(g, ignore_edge(e)), cpy, iso_map)));
}
else { // edge not added
if (! (is_undirected(g) && u == v)) {
// e should be a parallel edge
BOOST_CHECK(source(e, g) == u);
BOOST_CHECK(target(e, g) == v);
}
// The graph should not be changed.
BOOST_CHECK((verify_isomorphism(g, cpy, iso_map)));
}
} // test_add_edge()
void test_remove_edge(vertex_t u, vertex_t v, Graph& g)
{
Graph cpy;
std::vector<vertex_t> iso_vec(num_vertices(g));
IsoMap iso_map(iso_vec.begin(), get(vertex_index, g));
copy_graph(g, cpy, orig_to_copy(iso_map));
deg_size_t occurances = count(adjacent_vertices(u, g), v);
remove_edge(u, v, g);
BOOST_CHECK(num_edges(g) + occurances == num_edges(cpy));
BOOST_CHECK((verify_isomorphism
(g, make_filtered_graph(cpy, ignore_edges(u,v,cpy)),
iso_map)));
}
void test_remove_edge(edge_t e, Graph& g)
{
Graph cpy;
std::vector<vertex_t> iso_vec(num_vertices(g));
IsoMap iso_map(iso_vec.begin(), get(vertex_index, g));
copy_graph(g, cpy, orig_to_copy(iso_map));
vertex_t u = source(e, g), v = target(e, g);
deg_size_t occurances = count(adjacent_vertices(u, g), v);
remove_edge(e, g);
BOOST_CHECK(num_edges(g) + 1 == num_edges(cpy));
BOOST_CHECK(count(adjacent_vertices(u, g), v) + 1 == occurances);
BOOST_CHECK((verify_isomorphism
(g, make_filtered_graph(cpy, ignore_edge(e)),
iso_map)));
}
void test_clear_vertex(vertex_t v, Graph& g)
{
Graph cpy;
std::vector<vertex_t> iso_vec(num_vertices(g));
IsoMap iso_map(iso_vec.begin(), get(vertex_index, g));
copy_graph(g, cpy, orig_to_copy(iso_map));
clear_vertex(v, g);
BOOST_CHECK(out_degree(v, g) == 0);
BOOST_CHECK(num_vertices(g) == num_vertices(cpy));
BOOST_CHECK((verify_isomorphism
(g, make_filtered_graph(cpy, keep_all(), ignore_vertex(v)),
iso_map)));
}
//=========================================================================
// Property Map
template <typename PropVal, typename PropertyTag>
void test_readable_vertex_property_graph
(const std::vector<PropVal>& vertex_prop, PropertyTag tag, const Graph& g)
{
typedef typename property_map<Graph, PropertyTag>::const_type const_Map;
const_Map pmap = get(tag, g);
typename std::vector<PropVal>::const_iterator i = vertex_prop.begin();
for (typename boost::graph_traits<Graph>::vertex_iterator
bgl_first_9 = vertices(g).first, bgl_last_9 = vertices(g).second;
bgl_first_9 != bgl_last_9; bgl_first_9 = bgl_last_9)
for (typename boost::graph_traits<Graph>::vertex_descriptor v;
bgl_first_9 != bgl_last_9 ? (v = *bgl_first_9, true) : false;
++bgl_first_9) {
//BGL_FORALL_VERTICES_T(v, g, Graph) {
typename property_traits<const_Map>::value_type
pval1 = get(pmap, v), pval2 = get(tag, g, v);
BOOST_CHECK(pval1 == pval2);
BOOST_CHECK(pval1 == *i++);
}
}
template <typename PropVal, typename PropertyTag>
void test_vertex_property_graph
(const std::vector<PropVal>& vertex_prop, PropertyTag tag, Graph& g)
{
typedef typename property_map<Graph, PropertyTag>::type PMap;
PMap pmap = get(tag, g);
typename std::vector<PropVal>::const_iterator i = vertex_prop.begin();
for (typename boost::graph_traits<Graph>::vertex_iterator
bgl_first_9 = vertices(g).first, bgl_last_9 = vertices(g).second;
bgl_first_9 != bgl_last_9; bgl_first_9 = bgl_last_9)
for (typename boost::graph_traits<Graph>::vertex_descriptor v;
bgl_first_9 != bgl_last_9 ? (v = *bgl_first_9, true) : false;
++bgl_first_9)
// BGL_FORALL_VERTICES_T(v, g, Graph)
put(pmap, v, *i++);
test_readable_vertex_property_graph(vertex_prop, tag, g);
BGL_FORALL_VERTICES_T(v, g, Graph)
put(pmap, v, vertex_prop[0]);
typename std::vector<PropVal>::const_iterator j = vertex_prop.begin();
BGL_FORALL_VERTICES_T(v, g, Graph)
put(tag, g, v, *j++);
test_readable_vertex_property_graph(vertex_prop, tag, g);
}
};
} // namespace boost
#include <boost/graph/iteration_macros_undef.hpp>
#endif // BOOST_GRAPH_TEST_HPP