verdnatura-chat/ios/Pods/Flipper-Folly/folly/executors/ThreadPoolExecutor.cpp

479 lines
15 KiB
C++
Raw Normal View History

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/executors/ThreadPoolExecutor.h>
#include <folly/executors/GlobalThreadPoolList.h>
#include <folly/synchronization/AsymmetricMemoryBarrier.h>
namespace folly {
using SyncVecThreadPoolExecutors =
folly::Synchronized<std::vector<ThreadPoolExecutor*>>;
SyncVecThreadPoolExecutors& getSyncVecThreadPoolExecutors() {
static Indestructible<SyncVecThreadPoolExecutors> storage;
return *storage;
}
void ThreadPoolExecutor::registerThreadPoolExecutor(ThreadPoolExecutor* tpe) {
getSyncVecThreadPoolExecutors().wlock()->push_back(tpe);
}
void ThreadPoolExecutor::deregisterThreadPoolExecutor(ThreadPoolExecutor* tpe) {
getSyncVecThreadPoolExecutors().withWLock([tpe](auto& tpes) {
tpes.erase(std::remove(tpes.begin(), tpes.end(), tpe), tpes.end());
});
}
DEFINE_int64(
threadtimeout_ms,
60000,
"Idle time before ThreadPoolExecutor threads are joined");
ThreadPoolExecutor::ThreadPoolExecutor(
size_t /* maxThreads */,
size_t minThreads,
std::shared_ptr<ThreadFactory> threadFactory,
bool isWaitForAll)
: threadFactory_(std::move(threadFactory)),
isWaitForAll_(isWaitForAll),
taskStatsCallbacks_(std::make_shared<TaskStatsCallbackRegistry>()),
threadPoolHook_("folly::ThreadPoolExecutor"),
minThreads_(minThreads),
threadTimeout_(FLAGS_threadtimeout_ms) {}
ThreadPoolExecutor::~ThreadPoolExecutor() {
joinKeepAliveOnce();
CHECK_EQ(0, threadList_.get().size());
}
ThreadPoolExecutor::Task::Task(
Func&& func,
std::chrono::milliseconds expiration,
Func&& expireCallback)
: func_(std::move(func)),
expiration_(expiration),
expireCallback_(std::move(expireCallback)),
context_(folly::RequestContext::saveContext()) {
// Assume that the task in enqueued on creation
enqueueTime_ = std::chrono::steady_clock::now();
}
void ThreadPoolExecutor::runTask(const ThreadPtr& thread, Task&& task) {
thread->idle = false;
auto startTime = std::chrono::steady_clock::now();
task.stats_.waitTime = startTime - task.enqueueTime_;
if (task.expiration_ > std::chrono::milliseconds(0) &&
task.stats_.waitTime >= task.expiration_) {
task.stats_.expired = true;
if (task.expireCallback_ != nullptr) {
task.expireCallback_();
}
} else {
folly::RequestContextScopeGuard rctx(task.context_);
try {
task.func_();
} catch (const std::exception& e) {
LOG(ERROR) << "ThreadPoolExecutor: func threw unhandled "
<< typeid(e).name() << " exception: " << e.what();
} catch (...) {
LOG(ERROR) << "ThreadPoolExecutor: func threw unhandled non-exception "
"object";
}
task.stats_.runTime = std::chrono::steady_clock::now() - startTime;
}
thread->idle = true;
thread->lastActiveTime = std::chrono::steady_clock::now();
thread->taskStatsCallbacks->callbackList.withRLock([&](auto& callbacks) {
*thread->taskStatsCallbacks->inCallback = true;
SCOPE_EXIT {
*thread->taskStatsCallbacks->inCallback = false;
};
try {
for (auto& callback : callbacks) {
callback(task.stats_);
}
} catch (const std::exception& e) {
LOG(ERROR) << "ThreadPoolExecutor: task stats callback threw "
"unhandled "
<< typeid(e).name() << " exception: " << e.what();
} catch (...) {
LOG(ERROR) << "ThreadPoolExecutor: task stats callback threw "
"unhandled non-exception object";
}
});
}
void ThreadPoolExecutor::add(Func, std::chrono::milliseconds, Func) {
throw std::runtime_error(
"add() with expiration is not implemented for this Executor");
}
size_t ThreadPoolExecutor::numThreads() const {
return maxThreads_.load(std::memory_order_relaxed);
}
size_t ThreadPoolExecutor::numActiveThreads() const {
return activeThreads_.load(std::memory_order_relaxed);
}
// Set the maximum number of running threads.
void ThreadPoolExecutor::setNumThreads(size_t numThreads) {
/* Since ThreadPoolExecutor may be dynamically adjusting the number of
threads, we adjust the relevant variables instead of changing
the number of threads directly. Roughly:
If numThreads < minthreads reset minThreads to numThreads.
If numThreads < active threads, reduce number of running threads.
If the number of pending tasks is > 0, then increase the currently
active number of threads such that we can run all the tasks, or reach
numThreads.
Note that if there are observers, we actually have to create all
the threads, because some observer implementations need to 'observe'
all thread creation (see tests for an example of this)
*/
size_t numThreadsToJoin = 0;
{
SharedMutex::WriteHolder w{&threadListLock_};
auto pending = getPendingTaskCountImpl();
maxThreads_.store(numThreads, std::memory_order_relaxed);
auto active = activeThreads_.load(std::memory_order_relaxed);
auto minthreads = minThreads_.load(std::memory_order_relaxed);
if (numThreads < minthreads) {
minthreads = numThreads;
minThreads_.store(numThreads, std::memory_order_relaxed);
}
if (active > numThreads) {
numThreadsToJoin = active - numThreads;
if (numThreadsToJoin > active - minthreads) {
numThreadsToJoin = active - minthreads;
}
ThreadPoolExecutor::removeThreads(numThreadsToJoin, false);
activeThreads_.store(
active - numThreadsToJoin, std::memory_order_relaxed);
} else if (pending > 0 || !observers_.empty() || active < minthreads) {
size_t numToAdd = std::min(pending, numThreads - active);
if (!observers_.empty()) {
numToAdd = numThreads - active;
}
if (active + numToAdd < minthreads) {
numToAdd = minthreads - active;
}
ThreadPoolExecutor::addThreads(numToAdd);
activeThreads_.store(active + numToAdd, std::memory_order_relaxed);
}
}
/* We may have removed some threads, attempt to join them */
joinStoppedThreads(numThreadsToJoin);
}
// threadListLock_ is writelocked
void ThreadPoolExecutor::addThreads(size_t n) {
std::vector<ThreadPtr> newThreads;
for (size_t i = 0; i < n; i++) {
newThreads.push_back(makeThread());
}
for (auto& thread : newThreads) {
// TODO need a notion of failing to create the thread
// and then handling for that case
thread->handle = threadFactory_->newThread(
std::bind(&ThreadPoolExecutor::threadRun, this, thread));
threadList_.add(thread);
}
for (auto& thread : newThreads) {
thread->startupBaton.wait(
folly::Baton<>::wait_options().logging_enabled(false));
}
for (auto& o : observers_) {
for (auto& thread : newThreads) {
o->threadStarted(thread.get());
}
}
}
// threadListLock_ is writelocked
void ThreadPoolExecutor::removeThreads(size_t n, bool isJoin) {
isJoin_ = isJoin;
stopThreads(n);
}
void ThreadPoolExecutor::joinStoppedThreads(size_t n) {
for (size_t i = 0; i < n; i++) {
auto thread = stoppedThreads_.take();
thread->handle.join();
}
}
void ThreadPoolExecutor::stop() {
joinKeepAliveOnce();
size_t n = 0;
{
SharedMutex::WriteHolder w{&threadListLock_};
maxThreads_.store(0, std::memory_order_release);
activeThreads_.store(0, std::memory_order_release);
n = threadList_.get().size();
removeThreads(n, false);
n += threadsToJoin_.load(std::memory_order_relaxed);
threadsToJoin_.store(0, std::memory_order_relaxed);
}
joinStoppedThreads(n);
CHECK_EQ(0, threadList_.get().size());
CHECK_EQ(0, stoppedThreads_.size());
}
void ThreadPoolExecutor::join() {
joinKeepAliveOnce();
size_t n = 0;
{
SharedMutex::WriteHolder w{&threadListLock_};
maxThreads_.store(0, std::memory_order_release);
activeThreads_.store(0, std::memory_order_release);
n = threadList_.get().size();
removeThreads(n, true);
n += threadsToJoin_.load(std::memory_order_relaxed);
threadsToJoin_.store(0, std::memory_order_relaxed);
}
joinStoppedThreads(n);
CHECK_EQ(0, threadList_.get().size());
CHECK_EQ(0, stoppedThreads_.size());
}
void ThreadPoolExecutor::withAll(FunctionRef<void(ThreadPoolExecutor&)> f) {
getSyncVecThreadPoolExecutors().withRLock([f](auto& tpes) {
for (auto tpe : tpes) {
f(*tpe);
}
});
}
ThreadPoolExecutor::PoolStats ThreadPoolExecutor::getPoolStats() const {
const auto now = std::chrono::steady_clock::now();
SharedMutex::ReadHolder r{&threadListLock_};
ThreadPoolExecutor::PoolStats stats;
size_t activeTasks = 0;
size_t idleAlive = 0;
for (const auto& thread : threadList_.get()) {
if (thread->idle) {
const std::chrono::nanoseconds idleTime = now - thread->lastActiveTime;
stats.maxIdleTime = std::max(stats.maxIdleTime, idleTime);
idleAlive++;
} else {
activeTasks++;
}
}
stats.pendingTaskCount = getPendingTaskCountImpl();
stats.totalTaskCount = stats.pendingTaskCount + activeTasks;
stats.threadCount = maxThreads_.load(std::memory_order_relaxed);
stats.activeThreadCount =
activeThreads_.load(std::memory_order_relaxed) - idleAlive;
stats.idleThreadCount = stats.threadCount - stats.activeThreadCount;
return stats;
}
size_t ThreadPoolExecutor::getPendingTaskCount() const {
SharedMutex::ReadHolder r{&threadListLock_};
return getPendingTaskCountImpl();
}
std::string ThreadPoolExecutor::getName() const {
auto ntf = dynamic_cast<NamedThreadFactory*>(threadFactory_.get());
if (ntf == nullptr) {
return folly::demangle(typeid(*this).name()).toStdString();
}
return ntf->getNamePrefix();
}
std::atomic<uint64_t> ThreadPoolExecutor::Thread::nextId(0);
void ThreadPoolExecutor::subscribeToTaskStats(TaskStatsCallback cb) {
if (*taskStatsCallbacks_->inCallback) {
throw std::runtime_error("cannot subscribe in task stats callback");
}
taskStatsCallbacks_->callbackList.wlock()->push_back(std::move(cb));
}
BlockingQueueAddResult ThreadPoolExecutor::StoppedThreadQueue::add(
ThreadPoolExecutor::ThreadPtr item) {
std::lock_guard<std::mutex> guard(mutex_);
queue_.push(std::move(item));
return sem_.post();
}
ThreadPoolExecutor::ThreadPtr ThreadPoolExecutor::StoppedThreadQueue::take() {
while (true) {
{
std::lock_guard<std::mutex> guard(mutex_);
if (!queue_.empty()) {
auto item = std::move(queue_.front());
queue_.pop();
return item;
}
}
sem_.wait();
}
}
folly::Optional<ThreadPoolExecutor::ThreadPtr>
ThreadPoolExecutor::StoppedThreadQueue::try_take_for(
std::chrono::milliseconds time) {
while (true) {
{
std::lock_guard<std::mutex> guard(mutex_);
if (!queue_.empty()) {
auto item = std::move(queue_.front());
queue_.pop();
return item;
}
}
if (!sem_.try_wait_for(time)) {
return folly::none;
}
}
}
size_t ThreadPoolExecutor::StoppedThreadQueue::size() {
std::lock_guard<std::mutex> guard(mutex_);
return queue_.size();
}
void ThreadPoolExecutor::addObserver(std::shared_ptr<Observer> o) {
{
SharedMutex::WriteHolder r{&threadListLock_};
observers_.push_back(o);
for (auto& thread : threadList_.get()) {
o->threadPreviouslyStarted(thread.get());
}
}
while (activeThreads_.load(std::memory_order_relaxed) <
maxThreads_.load(std::memory_order_relaxed)) {
ensureActiveThreads();
}
}
void ThreadPoolExecutor::removeObserver(std::shared_ptr<Observer> o) {
SharedMutex::WriteHolder r{&threadListLock_};
for (auto& thread : threadList_.get()) {
o->threadNotYetStopped(thread.get());
}
for (auto it = observers_.begin(); it != observers_.end(); it++) {
if (*it == o) {
observers_.erase(it);
return;
}
}
DCHECK(false);
}
// Idle threads may have destroyed themselves, attempt to join
// them here
void ThreadPoolExecutor::ensureJoined() {
auto tojoin = threadsToJoin_.load(std::memory_order_relaxed);
if (tojoin) {
{
SharedMutex::WriteHolder w{&threadListLock_};
tojoin = threadsToJoin_.load(std::memory_order_relaxed);
threadsToJoin_.store(0, std::memory_order_relaxed);
}
joinStoppedThreads(tojoin);
}
}
// threadListLock_ must be write locked.
bool ThreadPoolExecutor::tryTimeoutThread() {
// Try to stop based on idle thread timeout (try_take_for),
// if there are at least minThreads running.
if (!minActive()) {
return false;
}
// Remove thread from active count
activeThreads_.store(
activeThreads_.load(std::memory_order_relaxed) - 1,
std::memory_order_relaxed);
// There is a memory ordering constraint w.r.t the queue
// implementation's add() and getPendingTaskCountImpl() - while many
// queues have seq_cst ordering, some do not, so add an explicit
// barrier. tryTimeoutThread is the slow path and only happens once
// every thread timeout; use asymmetric barrier to keep add() fast.
asymmetricHeavyBarrier();
// If this is based on idle thread timeout, then
// adjust vars appropriately (otherwise stop() or join()
// does this).
if (getPendingTaskCountImpl() > 0) {
// There are still pending tasks, we can't stop yet.
// re-up active threads and return.
activeThreads_.store(
activeThreads_.load(std::memory_order_relaxed) + 1,
std::memory_order_relaxed);
return false;
}
threadsToJoin_.store(
threadsToJoin_.load(std::memory_order_relaxed) + 1,
std::memory_order_relaxed);
return true;
}
// If we can't ensure that we were able to hand off a task to a thread,
// attempt to start a thread that handled the task, if we aren't already
// running the maximum number of threads.
void ThreadPoolExecutor::ensureActiveThreads() {
ensureJoined();
// Matches barrier in tryTimeoutThread(). Ensure task added
// is seen before loading activeThreads_ below.
asymmetricLightBarrier();
// Fast path assuming we are already at max threads.
auto active = activeThreads_.load(std::memory_order_relaxed);
auto total = maxThreads_.load(std::memory_order_relaxed);
if (active >= total) {
return;
}
SharedMutex::WriteHolder w{&threadListLock_};
// Double check behind lock.
active = activeThreads_.load(std::memory_order_relaxed);
total = maxThreads_.load(std::memory_order_relaxed);
if (active >= total) {
return;
}
ThreadPoolExecutor::addThreads(1);
activeThreads_.store(active + 1, std::memory_order_relaxed);
}
// If an idle thread times out, only join it if there are at least
// minThreads threads.
bool ThreadPoolExecutor::minActive() {
return activeThreads_.load(std::memory_order_relaxed) >
minThreads_.load(std::memory_order_relaxed);
}
} // namespace folly