verdnatura-chat/ios/Pods/Flipper-Folly/folly/json.cpp

1028 lines
27 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/json.h>
#include <algorithm>
#include <functional>
#include <iterator>
#include <type_traits>
#include <boost/algorithm/string.hpp>
#include <glog/logging.h>
#include <folly/Conv.h>
#include <folly/Portability.h>
#include <folly/Range.h>
#include <folly/String.h>
#include <folly/Unicode.h>
#include <folly/Utility.h>
#include <folly/lang/Bits.h>
#include <folly/portability/Constexpr.h>
namespace folly {
//////////////////////////////////////////////////////////////////////
namespace json {
namespace {
parse_error make_parse_error(
unsigned int line,
std::string const& context,
std::string const& expected) {
return parse_error(to<std::string>(
"json parse error on line ",
line,
!context.empty() ? to<std::string>(" near `", context, '\'') : "",
": ",
expected));
}
struct Printer {
explicit Printer(
std::string& out,
unsigned* indentLevel,
serialization_opts const* opts)
: out_(out), indentLevel_(indentLevel), opts_(*opts) {}
void operator()(dynamic const& v) const {
switch (v.type()) {
case dynamic::DOUBLE:
if (!opts_.allow_nan_inf &&
(std::isnan(v.asDouble()) || std::isinf(v.asDouble()))) {
throw json::parse_error(
"folly::toJson: JSON object value was a "
"NaN or INF");
}
toAppend(
v.asDouble(), &out_, opts_.double_mode, opts_.double_num_digits);
break;
case dynamic::INT64: {
auto intval = v.asInt();
if (opts_.javascript_safe) {
// Use folly::to to check that this integer can be represented
// as a double without loss of precision.
intval = int64_t(to<double>(intval));
}
toAppend(intval, &out_);
break;
}
case dynamic::BOOL:
out_ += v.asBool() ? "true" : "false";
break;
case dynamic::NULLT:
out_ += "null";
break;
case dynamic::STRING:
escapeString(v.asString(), out_, opts_);
break;
case dynamic::OBJECT:
printObject(v);
break;
case dynamic::ARRAY:
printArray(v);
break;
default:
CHECK(0) << "Bad type " << v.type();
}
}
private:
void printKV(const std::pair<const dynamic, dynamic>& p) const {
if (!opts_.allow_non_string_keys && !p.first.isString()) {
throw json::parse_error(
"folly::toJson: JSON object key was not a "
"string");
}
(*this)(p.first);
mapColon();
(*this)(p.second);
}
template <typename Iterator>
void printKVPairs(Iterator begin, Iterator end) const {
printKV(*begin);
for (++begin; begin != end; ++begin) {
out_ += ',';
newline();
printKV(*begin);
}
}
void printObject(dynamic const& o) const {
if (o.empty()) {
out_ += "{}";
return;
}
out_ += '{';
indent();
newline();
if (opts_.sort_keys || opts_.sort_keys_by) {
using ref = std::reference_wrapper<decltype(o.items())::value_type const>;
auto sort_keys_by = [&](auto begin, auto end, const auto& comp) {
std::sort(begin, end, [&](ref a, ref b) {
// Only compare keys. No ordering among identical keys.
return comp(a.get().first, b.get().first);
});
};
std::vector<ref> refs(o.items().begin(), o.items().end());
if (opts_.sort_keys_by) {
sort_keys_by(refs.begin(), refs.end(), opts_.sort_keys_by);
} else {
sort_keys_by(refs.begin(), refs.end(), std::less<>());
}
printKVPairs(refs.cbegin(), refs.cend());
} else {
printKVPairs(o.items().begin(), o.items().end());
}
outdent();
newline();
out_ += '}';
}
void printArray(dynamic const& a) const {
if (a.empty()) {
out_ += "[]";
return;
}
out_ += '[';
indent();
newline();
(*this)(a[0]);
for (auto& val : range(std::next(a.begin()), a.end())) {
out_ += ',';
newline();
(*this)(val);
}
outdent();
newline();
out_ += ']';
}
private:
void outdent() const {
if (indentLevel_) {
--*indentLevel_;
}
}
void indent() const {
if (indentLevel_) {
++*indentLevel_;
}
}
void newline() const {
if (indentLevel_) {
out_ += to<std::string>('\n', std::string(*indentLevel_ * 2, ' '));
}
}
void mapColon() const {
out_ += indentLevel_ ? ": " : ":";
}
private:
std::string& out_;
unsigned* const indentLevel_;
serialization_opts const& opts_;
};
//////////////////////////////////////////////////////////////////////
// Wraps our input buffer with some helper functions.
struct Input {
explicit Input(StringPiece range, json::serialization_opts const* opts)
: range_(range), opts_(*opts), lineNum_(0) {
storeCurrent();
}
Input(Input const&) = delete;
Input& operator=(Input const&) = delete;
char const* begin() const {
return range_.begin();
}
unsigned getLineNum() const {
return lineNum_;
}
// Parse ahead for as long as the supplied predicate is satisfied,
// returning a range of what was skipped.
template <class Predicate>
StringPiece skipWhile(const Predicate& p) {
std::size_t skipped = 0;
for (; skipped < range_.size(); ++skipped) {
if (!p(range_[skipped])) {
break;
}
if (range_[skipped] == '\n') {
++lineNum_;
}
}
auto ret = range_.subpiece(0, skipped);
range_.advance(skipped);
storeCurrent();
return ret;
}
StringPiece skipDigits() {
return skipWhile([](char c) { return c >= '0' && c <= '9'; });
}
StringPiece skipMinusAndDigits() {
bool firstChar = true;
return skipWhile([&firstChar](char c) {
bool result = (c >= '0' && c <= '9') || (firstChar && c == '-');
firstChar = false;
return result;
});
}
void skipWhitespace() {
unsigned index = 0;
while (true) {
while (index < range_.size() && range_[index] == ' ') {
index++;
}
if (index < range_.size()) {
if (range_[index] == '\n') {
index++;
++lineNum_;
continue;
}
if (range_[index] == '\t' || range_[index] == '\r') {
index++;
continue;
}
}
break;
}
range_.advance(index);
storeCurrent();
}
void expect(char c) {
if (**this != c) {
throw json::make_parse_error(
lineNum_, context(), to<std::string>("expected '", c, '\''));
}
++*this;
}
std::size_t size() const {
return range_.size();
}
int operator*() const {
return current_;
}
void operator++() {
range_.pop_front();
storeCurrent();
}
template <class T>
T extract() {
try {
return to<T>(&range_);
} catch (std::exception const& e) {
error(e.what());
}
}
bool consume(StringPiece str) {
if (boost::starts_with(range_, str)) {
range_.advance(str.size());
storeCurrent();
return true;
}
return false;
}
std::string context() const {
return range_.subpiece(0, 16 /* arbitrary */).toString();
}
dynamic error(char const* what) const {
throw json::make_parse_error(lineNum_, context(), what);
}
json::serialization_opts const& getOpts() {
return opts_;
}
void incrementRecursionLevel() {
if (currentRecursionLevel_ > opts_.recursion_limit) {
error("recursion limit exceeded");
}
currentRecursionLevel_++;
}
void decrementRecursionLevel() {
currentRecursionLevel_--;
}
private:
void storeCurrent() {
current_ = range_.empty() ? EOF : range_.front();
}
private:
StringPiece range_;
json::serialization_opts const& opts_;
unsigned lineNum_;
int current_;
unsigned int currentRecursionLevel_{0};
};
class RecursionGuard {
public:
explicit RecursionGuard(Input& in) : in_(in) {
in_.incrementRecursionLevel();
}
~RecursionGuard() {
in_.decrementRecursionLevel();
}
private:
Input& in_;
};
dynamic parseValue(Input& in, json::metadata_map* map);
std::string parseString(Input& in);
dynamic parseNumber(Input& in);
template <class K>
void parseObjectKeyValue(
Input& in,
dynamic& ret,
K&& key,
json::metadata_map* map) {
auto keyLineNumber = in.getLineNum();
in.skipWhitespace();
in.expect(':');
in.skipWhitespace();
K tmp;
if (map) {
tmp = K(key);
}
auto valueLineNumber = in.getLineNum();
ret.insert(std::forward<K>(key), parseValue(in, map));
if (map) {
auto val = ret.get_ptr(tmp);
// We just inserted it, so it should be there!
DCHECK(val != nullptr);
map->emplace(
val, json::parse_metadata{{{keyLineNumber}}, {{valueLineNumber}}});
}
}
dynamic parseObject(Input& in, json::metadata_map* map) {
DCHECK_EQ(*in, '{');
++in;
dynamic ret = dynamic::object;
in.skipWhitespace();
if (*in == '}') {
++in;
return ret;
}
for (;;) {
if (in.getOpts().allow_trailing_comma && *in == '}') {
break;
}
if (*in == '\"') { // string
auto key = parseString(in);
parseObjectKeyValue(in, ret, std::move(key), map);
} else if (!in.getOpts().allow_non_string_keys) {
in.error("expected string for object key name");
} else {
auto key = parseValue(in, map);
parseObjectKeyValue(in, ret, std::move(key), map);
}
in.skipWhitespace();
if (*in != ',') {
break;
}
++in;
in.skipWhitespace();
}
in.expect('}');
return ret;
}
dynamic parseArray(Input& in, json::metadata_map* map) {
DCHECK_EQ(*in, '[');
++in;
dynamic ret = dynamic::array;
in.skipWhitespace();
if (*in == ']') {
++in;
return ret;
}
std::vector<uint32_t> lineNumbers;
for (;;) {
if (in.getOpts().allow_trailing_comma && *in == ']') {
break;
}
ret.push_back(parseValue(in, map));
if (map) {
lineNumbers.push_back(in.getLineNum());
}
in.skipWhitespace();
if (*in != ',') {
break;
}
++in;
in.skipWhitespace();
}
if (map) {
for (size_t i = 0; i < ret.size(); i++) {
map->emplace(&ret[i], json::parse_metadata{{{0}}, {{lineNumbers[i]}}});
}
}
in.expect(']');
return ret;
}
dynamic parseNumber(Input& in) {
bool const negative = (*in == '-');
if (negative && in.consume("-Infinity")) {
if (in.getOpts().parse_numbers_as_strings) {
return "-Infinity";
} else {
return -std::numeric_limits<double>::infinity();
}
}
auto integral = in.skipMinusAndDigits();
if (negative && integral.size() < 2) {
in.error("expected digits after `-'");
}
auto const wasE = *in == 'e' || *in == 'E';
constexpr const char* maxInt = "9223372036854775807";
constexpr const char* minInt = "-9223372036854775808";
constexpr auto maxIntLen = constexpr_strlen(maxInt);
constexpr auto minIntLen = constexpr_strlen(minInt);
if (*in != '.' && !wasE && in.getOpts().parse_numbers_as_strings) {
return integral;
}
if (*in != '.' && !wasE) {
if (LIKELY(!in.getOpts().double_fallback || integral.size() < maxIntLen) ||
(!negative && integral.size() == maxIntLen && integral <= maxInt) ||
(negative && integral.size() == minIntLen && integral <= minInt)) {
auto val = to<int64_t>(integral);
in.skipWhitespace();
return val;
} else {
auto val = to<double>(integral);
in.skipWhitespace();
return val;
}
}
auto end = !wasE ? (++in, in.skipDigits().end()) : in.begin();
if (*in == 'e' || *in == 'E') {
++in;
if (*in == '+' || *in == '-') {
++in;
}
auto expPart = in.skipDigits();
end = expPart.end();
}
auto fullNum = range(integral.begin(), end);
if (in.getOpts().parse_numbers_as_strings) {
return fullNum;
}
auto val = to<double>(fullNum);
return val;
}
std::string decodeUnicodeEscape(Input& in) {
auto hexVal = [&](int c) -> uint16_t {
// clang-format off
return uint16_t(
c >= '0' && c <= '9' ? c - '0' :
c >= 'a' && c <= 'f' ? c - 'a' + 10 :
c >= 'A' && c <= 'F' ? c - 'A' + 10 :
(in.error("invalid hex digit"), 0));
// clang-format on
};
auto readHex = [&]() -> uint16_t {
if (in.size() < 4) {
in.error("expected 4 hex digits");
}
auto ret = uint16_t(hexVal(*in) * 4096);
++in;
ret += hexVal(*in) * 256;
++in;
ret += hexVal(*in) * 16;
++in;
ret += hexVal(*in);
++in;
return ret;
};
/*
* If the value encoded is in the surrogate pair range, we need to
* make sure there is another escape that we can use also.
*/
uint32_t codePoint = readHex();
if (codePoint >= 0xd800 && codePoint <= 0xdbff) {
if (!in.consume("\\u")) {
in.error(
"expected another unicode escape for second half of "
"surrogate pair");
}
uint16_t second = readHex();
if (second >= 0xdc00 && second <= 0xdfff) {
codePoint = 0x10000 + ((codePoint & 0x3ff) << 10) + (second & 0x3ff);
} else {
in.error("second character in surrogate pair is invalid");
}
} else if (codePoint >= 0xdc00 && codePoint <= 0xdfff) {
in.error("invalid unicode code point (in range [0xdc00,0xdfff])");
}
return codePointToUtf8(codePoint);
}
std::string parseString(Input& in) {
DCHECK_EQ(*in, '\"');
++in;
std::string ret;
for (;;) {
auto range = in.skipWhile([](char c) { return c != '\"' && c != '\\'; });
ret.append(range.begin(), range.end());
if (*in == '\"') {
++in;
break;
}
if (*in == '\\') {
++in;
switch (*in) {
// clang-format off
case '\"': ret.push_back('\"'); ++in; break;
case '\\': ret.push_back('\\'); ++in; break;
case '/': ret.push_back('/'); ++in; break;
case 'b': ret.push_back('\b'); ++in; break;
case 'f': ret.push_back('\f'); ++in; break;
case 'n': ret.push_back('\n'); ++in; break;
case 'r': ret.push_back('\r'); ++in; break;
case 't': ret.push_back('\t'); ++in; break;
case 'u': ++in; ret += decodeUnicodeEscape(in); break;
// clang-format on
default:
in.error(
to<std::string>("unknown escape ", *in, " in string").c_str());
}
continue;
}
if (*in == EOF) {
in.error("unterminated string");
}
if (!*in) {
/*
* Apparently we're actually supposed to ban all control
* characters from strings. This seems unnecessarily
* restrictive, so we're only banning zero bytes. (Since the
* string is presumed to be UTF-8 encoded it's fine to just
* check this way.)
*/
in.error("null byte in string");
}
ret.push_back(char(*in));
++in;
}
return ret;
}
dynamic parseValue(Input& in, json::metadata_map* map) {
RecursionGuard guard(in);
in.skipWhitespace();
// clang-format off
return
*in == '[' ? parseArray(in, map) :
*in == '{' ? parseObject(in, map) :
*in == '\"' ? parseString(in) :
(*in == '-' || (*in >= '0' && *in <= '9')) ? parseNumber(in) :
in.consume("true") ? true :
in.consume("false") ? false :
in.consume("null") ? nullptr :
in.consume("Infinity") ?
(in.getOpts().parse_numbers_as_strings ? (dynamic)"Infinity" :
(dynamic)std::numeric_limits<double>::infinity()) :
in.consume("NaN") ?
(in.getOpts().parse_numbers_as_strings ? (dynamic)"NaN" :
(dynamic)std::numeric_limits<double>::quiet_NaN()) :
in.error("expected json value");
// clang-format on
}
} // namespace
//////////////////////////////////////////////////////////////////////
std::array<uint64_t, 2> buildExtraAsciiToEscapeBitmap(StringPiece chars) {
std::array<uint64_t, 2> escapes{{0, 0}};
for (auto b : ByteRange(chars)) {
if (b >= 0x20 && b < 0x80) {
escapes[b / 64] |= uint64_t(1) << (b % 64);
}
}
return escapes;
}
std::string serialize(dynamic const& dyn, serialization_opts const& opts) {
std::string ret;
unsigned indentLevel = 0;
Printer p(ret, opts.pretty_formatting ? &indentLevel : nullptr, &opts);
p(dyn);
return ret;
}
// Fast path to determine the longest prefix that can be left
// unescaped in a string of sizeof(T) bytes packed in an integer of
// type T.
template <bool EnableExtraAsciiEscapes, class T>
size_t firstEscapableInWord(T s, const serialization_opts& opts) {
static_assert(std::is_unsigned<T>::value, "Unsigned integer required");
static constexpr T kOnes = ~T() / 255; // 0x...0101
static constexpr T kMsbs = kOnes * 0x80; // 0x...8080
// Sets the MSB of bytes < b. Precondition: b < 128.
auto isLess = [](T w, uint8_t b) {
// A byte is < b iff subtracting b underflows, so we check that
// the MSB wasn't set before and it's set after the subtraction.
return (w - kOnes * b) & ~w & kMsbs;
};
auto isChar = [&](uint8_t c) {
// A byte is == c iff it is 0 if xored with c.
return isLess(s ^ (kOnes * c), 1);
};
// The following masks have the MSB set for each byte of the word
// that satisfies the corresponding condition.
auto isHigh = s & kMsbs; // >= 128
auto isLow = isLess(s, 0x20); // <= 0x1f
auto needsEscape = isHigh | isLow | isChar('\\') | isChar('"');
if /* constexpr */ (EnableExtraAsciiEscapes) {
// Deal with optional bitmap for unicode escapes. Escapes can optionally be
// set for ascii characters 32 - 127, so the inner loop may run up to 96
// times. However, for the case where 0 or a handful of bits are set,
// looping will be minimal through use of findFirstSet.
for (size_t i = 0; i < opts.extra_ascii_to_escape_bitmap.size(); ++i) {
const auto offset = i * 64;
// Clear first 32 characters if this is the first index, since those are
// always escaped.
auto bitmap = opts.extra_ascii_to_escape_bitmap[i] &
(i == 0 ? uint64_t(-1) << 32 : ~0UL);
while (bitmap) {
auto bit = folly::findFirstSet(bitmap);
needsEscape |= isChar(static_cast<uint8_t>(offset + bit - 1));
bitmap &= bitmap - 1;
}
}
}
if (!needsEscape) {
return sizeof(T);
}
if (folly::kIsLittleEndian) {
return folly::findFirstSet(needsEscape) / 8 - 1;
} else {
return sizeof(T) - folly::findLastSet(needsEscape) / 8;
}
}
// Escape a string so that it is legal to print it in JSON text.
template <bool EnableExtraAsciiEscapes>
void escapeStringImpl(
StringPiece input,
std::string& out,
const serialization_opts& opts) {
auto hexDigit = [](uint8_t c) -> char {
return c < 10 ? c + '0' : c - 10 + 'a';
};
out.push_back('\"');
auto* p = reinterpret_cast<const unsigned char*>(input.begin());
auto* q = reinterpret_cast<const unsigned char*>(input.begin());
auto* e = reinterpret_cast<const unsigned char*>(input.end());
while (p < e) {
// Find the longest prefix that does not need escaping, and copy
// it literally into the output string.
auto firstEsc = p;
while (firstEsc < e) {
auto avail = to_unsigned(e - firstEsc);
uint64_t word = 0;
if (avail >= 8) {
word = folly::loadUnaligned<uint64_t>(firstEsc);
} else {
word = folly::partialLoadUnaligned<uint64_t>(firstEsc, avail);
}
auto prefix = firstEscapableInWord<EnableExtraAsciiEscapes>(word, opts);
DCHECK_LE(prefix, avail);
firstEsc += prefix;
if (prefix < 8) {
break;
}
}
if (firstEsc > p) {
out.append(reinterpret_cast<const char*>(p), firstEsc - p);
p = firstEsc;
// We can't be in the middle of a multibyte sequence, so we can reset q.
q = p;
if (p == e) {
break;
}
}
// Handle the next byte that may need escaping.
// Since non-ascii encoding inherently does utf8 validation
// we explicitly validate utf8 only if non-ascii encoding is disabled.
if ((opts.validate_utf8 || opts.skip_invalid_utf8) &&
!opts.encode_non_ascii) {
// To achieve better spatial and temporal coherence
// we do utf8 validation progressively along with the
// string-escaping instead of two separate passes.
// As the encoding progresses, q will stay at or ahead of p.
CHECK_GE(q, p);
// As p catches up with q, move q forward.
if (q == p) {
// calling utf8_decode has the side effect of
// checking that utf8 encodings are valid
char32_t v = utf8ToCodePoint(q, e, opts.skip_invalid_utf8);
if (opts.skip_invalid_utf8 && v == U'\ufffd') {
out.append(reinterpret_cast<const char*>(u8"\ufffd"));
p = q;
continue;
}
}
}
auto encodeUnicode = opts.encode_non_ascii && (*p & 0x80);
if /* constexpr */ (EnableExtraAsciiEscapes) {
encodeUnicode = encodeUnicode ||
(*p >= 0x20 && *p < 0x80 &&
(opts.extra_ascii_to_escape_bitmap[*p / 64] &
(uint64_t(1) << (*p % 64))));
}
if (encodeUnicode) {
// note that this if condition captures utf8 chars
// with value > 127, so size > 1 byte (or they are whitelisted for
// Unicode encoding).
// NOTE: char32_t / char16_t are both unsigned.
char32_t cp = utf8ToCodePoint(p, e, opts.skip_invalid_utf8);
auto writeHex = [&](char16_t v) {
char buf[] = "\\u\0\0\0\0";
buf[2] = hexDigit((v >> 12) & 0x0f);
buf[3] = hexDigit((v >> 8) & 0x0f);
buf[4] = hexDigit((v >> 4) & 0x0f);
buf[5] = hexDigit(v & 0x0f);
out.append(buf, 6);
};
// From the ECMA-404 The JSON Data Interchange Syntax 2nd Edition Dec 2017
if (cp < 0x10000u) {
// If the code point is in the Basic Multilingual Plane (U+0000 through
// U+FFFF), then it may be represented as a six-character sequence:
// a reverse solidus, followed by the lowercase letter u, followed by
// four hexadecimal digits that encode the code point.
writeHex(static_cast<char16_t>(cp));
} else {
// To escape a code point that is not in the Basic Multilingual Plane,
// the character may be represented as a twelve-character sequence,
// encoding the UTF-16 surrogate pair corresponding to the code point.
writeHex(static_cast<char16_t>(
0xd800u + (((cp - 0x10000u) >> 10) & 0x3ffu)));
writeHex(static_cast<char16_t>(0xdc00u + ((cp - 0x10000u) & 0x3ffu)));
}
} else if (*p == '\\' || *p == '\"') {
char buf[] = "\\\0";
buf[1] = char(*p++);
out.append(buf, 2);
} else if (*p <= 0x1f) {
switch (*p) {
// clang-format off
case '\b': out.append("\\b"); p++; break;
case '\f': out.append("\\f"); p++; break;
case '\n': out.append("\\n"); p++; break;
case '\r': out.append("\\r"); p++; break;
case '\t': out.append("\\t"); p++; break;
// clang-format on
default:
// Note that this if condition captures non readable chars
// with value < 32, so size = 1 byte (e.g control chars).
char buf[] = "\\u00\0\0";
buf[4] = hexDigit(uint8_t((*p & 0xf0) >> 4));
buf[5] = hexDigit(uint8_t(*p & 0xf));
out.append(buf, 6);
p++;
}
} else {
out.push_back(char(*p++));
}
}
out.push_back('\"');
}
void escapeString(
StringPiece input,
std::string& out,
const serialization_opts& opts) {
if (FOLLY_UNLIKELY(
opts.extra_ascii_to_escape_bitmap[0] ||
opts.extra_ascii_to_escape_bitmap[1])) {
escapeStringImpl<true>(input, out, opts);
} else {
escapeStringImpl<false>(input, out, opts);
}
}
std::string stripComments(StringPiece jsonC) {
std::string result;
enum class State {
None,
InString,
InlineComment,
LineComment
} state = State::None;
for (size_t i = 0; i < jsonC.size(); ++i) {
auto s = jsonC.subpiece(i);
switch (state) {
case State::None:
if (s.startsWith("/*")) {
state = State::InlineComment;
++i;
continue;
} else if (s.startsWith("//")) {
state = State::LineComment;
++i;
continue;
} else if (s[0] == '\"') {
state = State::InString;
}
result.push_back(s[0]);
break;
case State::InString:
if (s[0] == '\\') {
if (UNLIKELY(s.size() == 1)) {
throw std::logic_error("Invalid JSONC: string is not terminated");
}
result.push_back(s[0]);
result.push_back(s[1]);
++i;
continue;
} else if (s[0] == '\"') {
state = State::None;
}
result.push_back(s[0]);
break;
case State::InlineComment:
if (s.startsWith("*/")) {
state = State::None;
++i;
}
break;
case State::LineComment:
if (s[0] == '\n') {
// skip the line break. It doesn't matter.
state = State::None;
}
break;
default:
throw std::logic_error("Unknown comment state");
}
}
return result;
}
} // namespace json
//////////////////////////////////////////////////////////////////////
dynamic parseJsonWithMetadata(StringPiece range, json::metadata_map* map) {
return parseJsonWithMetadata(range, json::serialization_opts(), map);
}
dynamic parseJsonWithMetadata(
StringPiece range,
json::serialization_opts const& opts,
json::metadata_map* map) {
json::Input in(range, &opts);
uint32_t n = in.getLineNum();
auto ret = parseValue(in, map);
if (map) {
map->emplace(&ret, json::parse_metadata{{{0}}, {{n}}});
}
in.skipWhitespace();
if (in.size() && *in != '\0') {
in.error("parsing didn't consume all input");
}
return ret;
}
dynamic parseJson(StringPiece range) {
return parseJson(range, json::serialization_opts());
}
dynamic parseJson(StringPiece range, json::serialization_opts const& opts) {
json::Input in(range, &opts);
auto ret = parseValue(in, nullptr);
in.skipWhitespace();
if (in.size() && *in != '\0') {
in.error("parsing didn't consume all input");
}
return ret;
}
std::string toJson(dynamic const& dyn) {
return json::serialize(dyn, json::serialization_opts());
}
std::string toPrettyJson(dynamic const& dyn) {
json::serialization_opts opts;
opts.pretty_formatting = true;
opts.sort_keys = true;
return json::serialize(dyn, opts);
}
//////////////////////////////////////////////////////////////////////
// dynamic::print_as_pseudo_json() is implemented here for header
// ordering reasons (most of the dynamic implementation is in
// dynamic-inl.h, which we don't want to include json.h).
void dynamic::print_as_pseudo_json(std::ostream& out) const {
json::serialization_opts opts;
opts.allow_non_string_keys = true;
opts.allow_nan_inf = true;
out << json::serialize(*this, opts);
}
void PrintTo(const dynamic& dyn, std::ostream* os) {
json::serialization_opts opts;
opts.allow_nan_inf = true;
opts.allow_non_string_keys = true;
opts.pretty_formatting = true;
opts.sort_keys = true;
*os << json::serialize(dyn, opts);
}
//////////////////////////////////////////////////////////////////////
} // namespace folly