verdnatura-chat/ios/Pods/Folly/folly/GroupVarint.h

665 lines
18 KiB
C++

/*
* Copyright 2012-present Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cstdint>
#include <limits>
#include <glog/logging.h>
#if !defined(__GNUC__) && !defined(_MSC_VER)
#error GroupVarint.h requires GCC or MSVC
#endif
#include <folly/Portability.h>
#if FOLLY_X64 || defined(__i386__) || FOLLY_PPC64 || FOLLY_AARCH64
#define HAVE_GROUP_VARINT 1
#include <folly/Range.h>
#include <folly/detail/GroupVarintDetail.h>
#include <folly/lang/Bits.h>
#include <folly/portability/Builtins.h>
#if FOLLY_SSE >= 3
#include <nmmintrin.h>
namespace folly {
namespace detail {
extern const std::array<std::array<std::uint32_t, 4>, 256> groupVarintSSEMasks;
} // namespace detail
} // namespace folly
#endif
namespace folly {
namespace detail {
extern const std::array<std::uint8_t, 256> groupVarintLengths;
} // namespace detail
} // namespace folly
namespace folly {
template <typename T>
class GroupVarint;
/**
* GroupVarint encoding for 32-bit values.
*
* Encodes 4 32-bit integers at once, each using 1-4 bytes depending on size.
* There is one byte of overhead. (The first byte contains the lengths of
* the four integers encoded as two bits each; 00=1 byte .. 11=4 bytes)
*
* This implementation assumes little-endian and does unaligned 32-bit
* accesses, so it's basically not portable outside of the x86[_64] world.
*/
template <>
class GroupVarint<uint32_t> : public detail::GroupVarintBase<uint32_t> {
public:
/**
* Return the number of bytes used to encode these four values.
*/
static size_t size(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
return kHeaderSize + kGroupSize + key(a) + key(b) + key(c) + key(d);
}
/**
* Return the number of bytes used to encode four uint32_t values stored
* at consecutive positions in an array.
*/
static size_t size(const uint32_t* p) {
return size(p[0], p[1], p[2], p[3]);
}
/**
* Return the number of bytes used to encode count (<= 4) values.
* If you clip a buffer after these many bytes, you can still decode
* the first "count" values correctly (if the remaining size() -
* partialSize() bytes are filled with garbage).
*/
static size_t partialSize(const type* p, size_t count) {
DCHECK_LE(count, kGroupSize);
size_t s = kHeaderSize + count;
for (; count; --count, ++p) {
s += key(*p);
}
return s;
}
/**
* Return the number of values from *p that are valid from an encoded
* buffer of size bytes.
*/
static size_t partialCount(const char* p, size_t size) {
uint8_t v = uint8_t(*p);
size_t s = kHeaderSize;
s += 1 + b0key(v);
if (s > size) {
return 0;
}
s += 1 + b1key(v);
if (s > size) {
return 1;
}
s += 1 + b2key(v);
if (s > size) {
return 2;
}
s += 1 + b3key(v);
if (s > size) {
return 3;
}
return 4;
}
/**
* Given a pointer to the beginning of an GroupVarint32-encoded block,
* return the number of bytes used by the encoding.
*/
static size_t encodedSize(const char* p) {
return kHeaderSize + kGroupSize + b0key(uint8_t(*p)) + b1key(uint8_t(*p)) +
b2key(uint8_t(*p)) + b3key(uint8_t(*p));
}
/**
* Encode four uint32_t values into the buffer pointed-to by p, and return
* the next position in the buffer (that is, one character past the last
* encoded byte). p needs to have at least size()+4 bytes available.
*/
static char* encode(char* p, uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
uint8_t b0key = key(a);
uint8_t b1key = key(b);
uint8_t b2key = key(c);
uint8_t b3key = key(d);
*p++ = (b3key << 6) | (b2key << 4) | (b1key << 2) | b0key;
storeUnaligned(p, a);
p += b0key + 1;
storeUnaligned(p, b);
p += b1key + 1;
storeUnaligned(p, c);
p += b2key + 1;
storeUnaligned(p, d);
p += b3key + 1;
return p;
}
/**
* Encode four uint32_t values from the array pointed-to by src into the
* buffer pointed-to by p, similar to encode(p,a,b,c,d) above.
*/
static char* encode(char* p, const uint32_t* src) {
return encode(p, src[0], src[1], src[2], src[3]);
}
/**
* Decode four uint32_t values from a buffer, and return the next position
* in the buffer (that is, one character past the last encoded byte).
* The buffer needs to have at least 3 extra bytes available (they
* may be read but ignored).
*/
static const char* decode_simple(
const char* p,
uint32_t* a,
uint32_t* b,
uint32_t* c,
uint32_t* d) {
size_t k = loadUnaligned<uint8_t>(p);
const char* end = p + detail::groupVarintLengths[k];
++p;
size_t k0 = b0key(k);
*a = loadUnaligned<uint32_t>(p) & kMask[k0];
p += k0 + 1;
size_t k1 = b1key(k);
*b = loadUnaligned<uint32_t>(p) & kMask[k1];
p += k1 + 1;
size_t k2 = b2key(k);
*c = loadUnaligned<uint32_t>(p) & kMask[k2];
p += k2 + 1;
size_t k3 = b3key(k);
*d = loadUnaligned<uint32_t>(p) & kMask[k3];
// p += k3+1;
return end;
}
/**
* Decode four uint32_t values from a buffer and store them in the array
* pointed-to by dest, similar to decode(p,a,b,c,d) above.
*/
static const char* decode_simple(const char* p, uint32_t* dest) {
return decode_simple(p, dest, dest + 1, dest + 2, dest + 3);
}
#if FOLLY_SSE >= 3
/**
* Just like the non-SSSE3 decode below, but with the additional constraint
* that we must be able to read at least 17 bytes from the input pointer, p.
*/
static const char* decode(const char* p, uint32_t* dest) {
uint8_t key = uint8_t(p[0]);
__m128i val = _mm_loadu_si128((const __m128i*)(p + 1));
__m128i mask =
_mm_load_si128((const __m128i*)detail::groupVarintSSEMasks[key].data());
__m128i r = _mm_shuffle_epi8(val, mask);
_mm_storeu_si128((__m128i*)dest, r);
return p + detail::groupVarintLengths[key];
}
/**
* Just like decode_simple, but with the additional constraint that
* we must be able to read at least 17 bytes from the input pointer, p.
*/
static const char*
decode(const char* p, uint32_t* a, uint32_t* b, uint32_t* c, uint32_t* d) {
uint8_t key = uint8_t(p[0]);
__m128i val = _mm_loadu_si128((const __m128i*)(p + 1));
__m128i mask =
_mm_load_si128((const __m128i*)detail::groupVarintSSEMasks[key].data());
__m128i r = _mm_shuffle_epi8(val, mask);
// Extracting 32 bits at a time out of an XMM register is a SSE4 feature
#if FOLLY_SSE >= 4
*a = uint32_t(_mm_extract_epi32(r, 0));
*b = uint32_t(_mm_extract_epi32(r, 1));
*c = uint32_t(_mm_extract_epi32(r, 2));
*d = uint32_t(_mm_extract_epi32(r, 3));
#else /* !__SSE4__ */
*a = _mm_extract_epi16(r, 0) + (_mm_extract_epi16(r, 1) << 16);
*b = _mm_extract_epi16(r, 2) + (_mm_extract_epi16(r, 3) << 16);
*c = _mm_extract_epi16(r, 4) + (_mm_extract_epi16(r, 5) << 16);
*d = _mm_extract_epi16(r, 6) + (_mm_extract_epi16(r, 7) << 16);
#endif /* __SSE4__ */
return p + detail::groupVarintLengths[key];
}
#else /* !__SSSE3__ */
static const char*
decode(const char* p, uint32_t* a, uint32_t* b, uint32_t* c, uint32_t* d) {
return decode_simple(p, a, b, c, d);
}
static const char* decode(const char* p, uint32_t* dest) {
return decode_simple(p, dest);
}
#endif /* __SSSE3__ */
private:
static uint8_t key(uint32_t x) {
// __builtin_clz is undefined for the x==0 case
return uint8_t(3 - (__builtin_clz(x | 1) / 8));
}
static size_t b0key(size_t x) {
return x & 3;
}
static size_t b1key(size_t x) {
return (x >> 2) & 3;
}
static size_t b2key(size_t x) {
return (x >> 4) & 3;
}
static size_t b3key(size_t x) {
return (x >> 6) & 3;
}
static const uint32_t kMask[];
};
/**
* GroupVarint encoding for 64-bit values.
*
* Encodes 5 64-bit integers at once, each using 1-8 bytes depending on size.
* There are two bytes of overhead. (The first two bytes contain the lengths
* of the five integers encoded as three bits each; 000=1 byte .. 111 = 8 bytes)
*
* This implementation assumes little-endian and does unaligned 64-bit
* accesses, so it's basically not portable outside of the x86[_64] world.
*/
template <>
class GroupVarint<uint64_t> : public detail::GroupVarintBase<uint64_t> {
public:
/**
* Return the number of bytes used to encode these five values.
*/
static size_t
size(uint64_t a, uint64_t b, uint64_t c, uint64_t d, uint64_t e) {
return kHeaderSize + kGroupSize + key(a) + key(b) + key(c) + key(d) +
key(e);
}
/**
* Return the number of bytes used to encode five uint64_t values stored
* at consecutive positions in an array.
*/
static size_t size(const uint64_t* p) {
return size(p[0], p[1], p[2], p[3], p[4]);
}
/**
* Return the number of bytes used to encode count (<= 4) values.
* If you clip a buffer after these many bytes, you can still decode
* the first "count" values correctly (if the remaining size() -
* partialSize() bytes are filled with garbage).
*/
static size_t partialSize(const type* p, size_t count) {
DCHECK_LE(count, kGroupSize);
size_t s = kHeaderSize + count;
for (; count; --count, ++p) {
s += key(*p);
}
return s;
}
/**
* Return the number of values from *p that are valid from an encoded
* buffer of size bytes.
*/
static size_t partialCount(const char* p, size_t size) {
uint16_t v = loadUnaligned<uint16_t>(p);
size_t s = kHeaderSize;
s += 1 + b0key(v);
if (s > size) {
return 0;
}
s += 1 + b1key(v);
if (s > size) {
return 1;
}
s += 1 + b2key(v);
if (s > size) {
return 2;
}
s += 1 + b3key(v);
if (s > size) {
return 3;
}
s += 1 + b4key(v);
if (s > size) {
return 4;
}
return 5;
}
/**
* Given a pointer to the beginning of an GroupVarint64-encoded block,
* return the number of bytes used by the encoding.
*/
static size_t encodedSize(const char* p) {
uint16_t n = loadUnaligned<uint16_t>(p);
return kHeaderSize + kGroupSize + b0key(n) + b1key(n) + b2key(n) +
b3key(n) + b4key(n);
}
/**
* Encode five uint64_t values into the buffer pointed-to by p, and return
* the next position in the buffer (that is, one character past the last
* encoded byte). p needs to have at least size()+8 bytes available.
*/
static char*
encode(char* p, uint64_t a, uint64_t b, uint64_t c, uint64_t d, uint64_t e) {
uint16_t b0key = key(a);
uint16_t b1key = key(b);
uint16_t b2key = key(c);
uint16_t b3key = key(d);
uint16_t b4key = key(e);
storeUnaligned<uint16_t>(
p,
uint16_t(
(b4key << 12) | (b3key << 9) | (b2key << 6) | (b1key << 3) |
b0key));
p += 2;
storeUnaligned(p, a);
p += b0key + 1;
storeUnaligned(p, b);
p += b1key + 1;
storeUnaligned(p, c);
p += b2key + 1;
storeUnaligned(p, d);
p += b3key + 1;
storeUnaligned(p, e);
p += b4key + 1;
return p;
}
/**
* Encode five uint64_t values from the array pointed-to by src into the
* buffer pointed-to by p, similar to encode(p,a,b,c,d,e) above.
*/
static char* encode(char* p, const uint64_t* src) {
return encode(p, src[0], src[1], src[2], src[3], src[4]);
}
/**
* Decode five uint64_t values from a buffer, and return the next position
* in the buffer (that is, one character past the last encoded byte).
* The buffer needs to have at least 7 bytes available (they may be read
* but ignored).
*/
static const char* decode(
const char* p,
uint64_t* a,
uint64_t* b,
uint64_t* c,
uint64_t* d,
uint64_t* e) {
uint16_t k = loadUnaligned<uint16_t>(p);
p += 2;
uint8_t k0 = b0key(k);
*a = loadUnaligned<uint64_t>(p) & kMask[k0];
p += k0 + 1;
uint8_t k1 = b1key(k);
*b = loadUnaligned<uint64_t>(p) & kMask[k1];
p += k1 + 1;
uint8_t k2 = b2key(k);
*c = loadUnaligned<uint64_t>(p) & kMask[k2];
p += k2 + 1;
uint8_t k3 = b3key(k);
*d = loadUnaligned<uint64_t>(p) & kMask[k3];
p += k3 + 1;
uint8_t k4 = b4key(k);
*e = loadUnaligned<uint64_t>(p) & kMask[k4];
p += k4 + 1;
return p;
}
/**
* Decode five uint64_t values from a buffer and store them in the array
* pointed-to by dest, similar to decode(p,a,b,c,d,e) above.
*/
static const char* decode(const char* p, uint64_t* dest) {
return decode(p, dest, dest + 1, dest + 2, dest + 3, dest + 4);
}
private:
enum { kHeaderBytes = 2 };
static uint8_t key(uint64_t x) {
// __builtin_clzll is undefined for the x==0 case
return uint8_t(7 - (__builtin_clzll(x | 1) / 8));
}
static uint8_t b0key(uint16_t x) {
return x & 7u;
}
static uint8_t b1key(uint16_t x) {
return (x >> 3) & 7u;
}
static uint8_t b2key(uint16_t x) {
return (x >> 6) & 7u;
}
static uint8_t b3key(uint16_t x) {
return (x >> 9) & 7u;
}
static uint8_t b4key(uint16_t x) {
return (x >> 12) & 7u;
}
static const uint64_t kMask[];
};
typedef GroupVarint<uint32_t> GroupVarint32;
typedef GroupVarint<uint64_t> GroupVarint64;
/**
* Simplify use of GroupVarint* for the case where data is available one
* entry at a time (instead of one group at a time). Handles buffering
* and an incomplete last chunk.
*
* Output is a function object that accepts character ranges:
* out(StringPiece) appends the given character range to the output.
*/
template <class T, class Output>
class GroupVarintEncoder {
public:
typedef GroupVarint<T> Base;
typedef T type;
explicit GroupVarintEncoder(Output out) : out_(out), count_(0) {}
~GroupVarintEncoder() {
finish();
}
/**
* Add a value to the encoder.
*/
void add(type val) {
buf_[count_++] = val;
if (count_ == Base::kGroupSize) {
char* p = Base::encode(tmp_, buf_);
out_(StringPiece(tmp_, p));
count_ = 0;
}
}
/**
* Finish encoding, flushing any buffered values if necessary.
* After finish(), the encoder is immediately ready to encode more data
* to the same output.
*/
void finish() {
if (count_) {
// This is not strictly necessary, but it makes testing easy;
// uninitialized bytes are guaranteed to be recorded as taking one byte
// (not more).
for (size_t i = count_; i < Base::kGroupSize; i++) {
buf_[i] = 0;
}
Base::encode(tmp_, buf_);
out_(StringPiece(tmp_, Base::partialSize(buf_, count_)));
count_ = 0;
}
}
/**
* Return the appender that was used.
*/
Output& output() {
return out_;
}
const Output& output() const {
return out_;
}
/**
* Reset the encoder, disregarding any state (except what was already
* flushed to the output, of course).
*/
void clear() {
count_ = 0;
}
private:
Output out_;
char tmp_[Base::kMaxSize];
type buf_[Base::kGroupSize];
size_t count_;
};
/**
* Simplify use of GroupVarint* for the case where the last group in the
* input may be incomplete (but the exact size of the input is known).
* Allows for extracting values one at a time.
*/
template <typename T>
class GroupVarintDecoder {
public:
typedef GroupVarint<T> Base;
typedef T type;
GroupVarintDecoder() = default;
explicit GroupVarintDecoder(StringPiece data, size_t maxCount = (size_t)-1)
: rrest_(data.end()),
p_(data.data()),
end_(data.end()),
limit_(end_),
pos_(0),
count_(0),
remaining_(maxCount) {}
void reset(StringPiece data, size_t maxCount = (size_t)-1) {
rrest_ = data.end();
p_ = data.data();
end_ = data.end();
limit_ = end_;
pos_ = 0;
count_ = 0;
remaining_ = maxCount;
}
/**
* Read and return the next value.
*/
bool next(type* val) {
if (pos_ == count_) {
// refill
size_t rem = size_t(end_ - p_);
if (rem == 0 || remaining_ == 0) {
return false;
}
// next() attempts to read one full group at a time, and so we must have
// at least enough bytes readable after its end to handle the case if the
// last group is full.
//
// The best way to ensure this is to ensure that data has at least
// Base::kMaxSize - 1 bytes readable *after* the end, otherwise we'll copy
// into a temporary buffer.
if (limit_ - p_ < Base::kMaxSize) {
memcpy(tmp_, p_, rem);
p_ = tmp_;
end_ = p_ + rem;
limit_ = tmp_ + sizeof(tmp_);
}
pos_ = 0;
const char* n = Base::decode(p_, buf_);
if (n <= end_) {
// Full group could be decoded
if (remaining_ >= Base::kGroupSize) {
remaining_ -= Base::kGroupSize;
count_ = Base::kGroupSize;
p_ = n;
} else {
count_ = remaining_;
remaining_ = 0;
p_ += Base::partialSize(buf_, count_);
}
} else {
// Can't decode a full group
count_ = Base::partialCount(p_, size_t(end_ - p_));
if (remaining_ >= count_) {
remaining_ -= count_;
p_ = end_;
} else {
count_ = remaining_;
remaining_ = 0;
p_ += Base::partialSize(buf_, count_);
}
if (count_ == 0) {
return false;
}
}
}
*val = buf_[pos_++];
return true;
}
StringPiece rest() const {
// This is only valid after next() returned false
CHECK(pos_ == count_ && (p_ == end_ || remaining_ == 0));
// p_ may point to the internal buffer (tmp_), but we want
// to return subpiece of the original data
size_t size = size_t(end_ - p_);
return StringPiece(rrest_ - size, rrest_);
}
private:
const char* rrest_;
const char* p_;
const char* end_;
const char* limit_;
char tmp_[2 * Base::kMaxSize];
type buf_[Base::kGroupSize];
size_t pos_;
size_t count_;
size_t remaining_;
};
typedef GroupVarintDecoder<uint32_t> GroupVarint32Decoder;
typedef GroupVarintDecoder<uint64_t> GroupVarint64Decoder;
} // namespace folly
#endif /* FOLLY_X64 || defined(__i386__) || FOLLY_PPC64 */