verdnatura-chat/ios/Pods/Flipper-Folly/folly/experimental/SingleWriterFixedHashMap.h

331 lines
8.2 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <folly/lang/Bits.h>
#include <glog/logging.h>
#include <atomic>
namespace folly {
/// SingleWriterFixedHashMap:
///
/// Minimal single-writer fixed hash map implementation that supports:
/// - Copy construction with optional capacity expansion.
/// - Concurrent read-only lookup.
/// - Concurrent read-only iteration.
///
/// Assumes that higher level code:
/// - Checks availability of empty slots before calling insert
/// - Manages expansion and/or cleanup of tombstones
///
/// Notes on algorithm:
/// - Tombstones are used to mark previously occupied slots.
/// - A slot with a tombstone can only be reused for the same key. The
/// reason for that is to enforce that once a key occupies a slot,
/// that key cannot use any other slot for the lifetime of the
/// map. This is to guarantee that when readers iterate over the map
/// they do not encounter any key more than once.
///
/// Writer-only operations:
/// - insert()
/// - erase()
/// - used()
/// - available()
///
template <typename Key, typename Value>
class SingleWriterFixedHashMap {
#if __cpp_lib_atomic_is_always_lock_free
static_assert(
std::atomic<Value>::is_always_lock_free,
"This implementation depends on having fast atomic "
"data-race-free loads and stores of Value type.");
#endif
static_assert(
std::is_trivial<Key>::value,
"This implementation depends on using a single key instance "
"for all insert and erase operations. The reason is to allow "
"readers to read keys data-race-free concurrently with possible "
"concurrent insert and erase operations on the keys.");
class Elem;
enum class State : uint8_t { EMPTY, VALID, TOMBSTONE };
size_t capacity_;
size_t used_{0};
std::atomic<size_t> size_{0};
std::unique_ptr<Elem[]> elem_;
public:
class Iterator;
explicit SingleWriterFixedHashMap(size_t capacity)
: capacity_(folly::nextPowTwo(capacity)) {}
explicit SingleWriterFixedHashMap(
size_t capacity,
const SingleWriterFixedHashMap& o)
: capacity_(folly::nextPowTwo(capacity)) {
if (o.empty()) {
return;
}
elem_ = std::make_unique<Elem[]>(capacity_);
for (size_t i = 0; i < o.capacity_; ++i) {
Elem& e = o.elem_[i];
if (e.valid()) {
insert(e.key(), e.value());
}
}
}
FOLLY_ALWAYS_INLINE Iterator begin() const {
return empty() ? end() : Iterator(*this);
}
FOLLY_ALWAYS_INLINE Iterator end() const {
return Iterator(*this, capacity_);
}
size_t capacity() const {
return capacity_;
}
/* not data-race-free, to be called only by the single writer */
size_t used() const {
return used_;
}
/* not-data race-free, to be called only by the single writer */
size_t available() const {
return capacity_ - used_;
}
/* data-race-free, can be called by readers */
FOLLY_ALWAYS_INLINE size_t size() const {
return size_.load(std::memory_order_acquire);
}
FOLLY_ALWAYS_INLINE bool empty() const {
return size() == 0;
}
bool insert(Key key, Value value) {
if (!elem_) {
elem_ = std::make_unique<Elem[]>(capacity_);
}
DCHECK_LT(used_, capacity_);
if (writer_find(key) < capacity_) {
return false;
}
size_t index = hash(key);
auto attempts = capacity_;
size_t mask = capacity_ - 1;
while (attempts--) {
Elem& e = elem_[index];
auto state = e.state();
if (state == State::EMPTY ||
(state == State::TOMBSTONE && e.key() == key)) {
if (state == State::EMPTY) {
e.setKey(key);
++used_;
DCHECK_LE(used_, capacity_);
}
e.setValue(value);
e.setValid();
setSize(size() + 1);
DCHECK_LE(size(), used_);
return true;
}
index = (index + 1) & mask;
}
CHECK(false) << "No available slots";
folly::assume_unreachable();
}
void erase(Iterator& it) {
DCHECK_NE(it, end());
Elem& e = elem_[it.index_];
erase_internal(e);
}
bool erase(Key key) {
size_t index = writer_find(key);
if (index == capacity_) {
return false;
}
Elem& e = elem_[index];
erase_internal(e);
return true;
}
FOLLY_ALWAYS_INLINE Iterator find(Key key) const {
size_t index = reader_find(key);
return Iterator(*this, index);
}
FOLLY_ALWAYS_INLINE bool contains(Key key) const {
return reader_find(key) < capacity_;
}
private:
FOLLY_ALWAYS_INLINE size_t hash(Key key) const {
size_t mask = capacity_ - 1;
size_t index = std::hash<Key>()(key) & mask;
DCHECK_LT(index, capacity_);
return index;
}
void setSize(size_t size) {
size_.store(size, std::memory_order_release);
}
FOLLY_ALWAYS_INLINE size_t reader_find(Key key) const {
return find_internal(key);
}
size_t writer_find(Key key) {
return find_internal(key);
}
FOLLY_ALWAYS_INLINE size_t find_internal(Key key) const {
if (!empty()) {
size_t index = hash(key);
auto attempts = capacity_;
size_t mask = capacity_ - 1;
while (attempts--) {
Elem& e = elem_[index];
auto state = e.state();
if (state == State::VALID && e.key() == key) {
return index;
}
if (state == State::EMPTY) {
break;
}
index = (index + 1) & mask;
}
}
return capacity_;
}
void erase_internal(Elem& e) {
e.erase();
DCHECK_GT(size(), 0);
setSize(size() - 1);
}
/// Elem
class Elem {
std::atomic<State> state_;
Key key_;
std::atomic<Value> value_;
public:
Elem() : state_(State::EMPTY) {}
FOLLY_ALWAYS_INLINE State state() const {
return state_.load(std::memory_order_acquire);
}
FOLLY_ALWAYS_INLINE bool valid() const {
return state() == State::VALID;
}
FOLLY_ALWAYS_INLINE Key key() const {
return key_;
}
FOLLY_ALWAYS_INLINE Value value() const {
return value_.load(std::memory_order_relaxed);
}
void setKey(Key key) {
key_ = key;
}
void setValue(Value value) {
value_.store(value, std::memory_order_relaxed);
}
void setValid() {
state_.store(State::VALID, std::memory_order_release);
}
void erase() {
state_.store(State::TOMBSTONE, std::memory_order_release);
}
}; // Elem
public:
/// Iterator
class Iterator {
Elem* elem_;
size_t capacity_;
size_t index_;
public:
FOLLY_ALWAYS_INLINE Key key() const {
DCHECK_LT(index_, capacity_);
Elem& e = elem_[index_];
return e.key();
}
FOLLY_ALWAYS_INLINE Value value() const {
DCHECK_LT(index_, capacity_);
Elem& e = elem_[index_];
return e.value();
}
FOLLY_ALWAYS_INLINE Iterator& operator++() {
DCHECK_LT(index_, capacity_);
++index_;
next();
return *this;
}
FOLLY_ALWAYS_INLINE bool operator==(const Iterator& o) const {
DCHECK(elem_ == o.elem_ || elem_ == nullptr || o.elem_ == nullptr);
DCHECK_EQ(capacity_, o.capacity_);
DCHECK_LE(index_, capacity_);
return index_ == o.index_;
}
FOLLY_ALWAYS_INLINE bool operator!=(const Iterator& o) const {
return !(*this == o);
}
private:
friend class SingleWriterFixedHashMap;
explicit Iterator(const SingleWriterFixedHashMap& m, size_t i = 0)
: elem_(m.elem_.get()), capacity_(m.capacity_), index_(i) {
if (index_ < capacity_) {
next();
}
}
FOLLY_ALWAYS_INLINE void next() {
while (index_ < capacity_ && !elem_[index_].valid()) {
++index_;
}
}
}; // Iterator
}; // SingleWriterFixedHashMap
} // namespace folly