verdnatura-chat/ios/Pods/Flipper-Folly/folly/IPAddressV6.cpp

534 lines
15 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/IPAddressV6.h>
#include <ostream>
#include <string>
#include <folly/Format.h>
#include <folly/IPAddress.h>
#include <folly/IPAddressV4.h>
#include <folly/MacAddress.h>
#include <folly/detail/IPAddressSource.h>
#ifndef _WIN32
#include <net/if.h>
#else
// Because of the massive pain that is libnl, this can't go into the socket
// portability header as you can't include <linux/if.h> and <net/if.h> in
// the same translation unit without getting errors -_-...
#include <iphlpapi.h> // @manual
#include <ntddndis.h> // @manual
// Alias the max size of an interface name to what posix expects.
#define IFNAMSIZ IF_NAMESIZE
#endif
using std::ostream;
using std::string;
namespace folly {
// public static const
const uint32_t IPAddressV6::PREFIX_TEREDO = 0x20010000;
const uint32_t IPAddressV6::PREFIX_6TO4 = 0x2002;
// free functions
size_t hash_value(const IPAddressV6& addr) {
return addr.hash();
}
ostream& operator<<(ostream& os, const IPAddressV6& addr) {
os << addr.str();
return os;
}
void toAppend(IPAddressV6 addr, string* result) {
result->append(addr.str());
}
void toAppend(IPAddressV6 addr, fbstring* result) {
result->append(addr.str());
}
bool IPAddressV6::validate(StringPiece ip) noexcept {
return tryFromString(ip).hasValue();
}
// public default constructor
IPAddressV6::IPAddressV6() = default;
// public string constructor
IPAddressV6::IPAddressV6(StringPiece addr) {
auto maybeIp = tryFromString(addr);
if (maybeIp.hasError()) {
throw IPAddressFormatException(
to<std::string>("Invalid IPv6 address '", addr, "'"));
}
*this = maybeIp.value();
}
Expected<IPAddressV6, IPAddressFormatError> IPAddressV6::tryFromString(
StringPiece str) noexcept {
auto ip = str.str();
// Allow addresses surrounded in brackets
if (ip.size() < 2) {
return makeUnexpected(IPAddressFormatError::INVALID_IP);
}
if (ip.front() == '[' && ip.back() == ']') {
ip = ip.substr(1, ip.size() - 2);
}
struct addrinfo* result;
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_NUMERICHOST;
if (::getaddrinfo(ip.c_str(), nullptr, &hints, &result) == 0) {
SCOPE_EXIT {
::freeaddrinfo(result);
};
const struct sockaddr_in6* sa =
reinterpret_cast<struct sockaddr_in6*>(result->ai_addr);
return IPAddressV6(*sa);
}
return makeUnexpected(IPAddressFormatError::INVALID_IP);
}
// in6_addr constructor
IPAddressV6::IPAddressV6(const in6_addr& src) noexcept : addr_(src) {}
// sockaddr_in6 constructor
IPAddressV6::IPAddressV6(const sockaddr_in6& src) noexcept
: addr_(src.sin6_addr), scope_(uint16_t(src.sin6_scope_id)) {}
// ByteArray16 constructor
IPAddressV6::IPAddressV6(const ByteArray16& src) noexcept : addr_(src) {}
// link-local constructor
IPAddressV6::IPAddressV6(LinkLocalTag, MacAddress mac) : addr_(mac) {}
IPAddressV6::AddressStorage::AddressStorage(MacAddress mac) {
// The link-local address uses modified EUI-64 format,
// See RFC 4291 sections 2.5.1, 2.5.6, and Appendix A
const auto* macBytes = mac.bytes();
memcpy(&bytes_.front(), "\xfe\x80\x00\x00\x00\x00\x00\x00", 8);
bytes_[8] = uint8_t(macBytes[0] ^ 0x02);
bytes_[9] = macBytes[1];
bytes_[10] = macBytes[2];
bytes_[11] = 0xff;
bytes_[12] = 0xfe;
bytes_[13] = macBytes[3];
bytes_[14] = macBytes[4];
bytes_[15] = macBytes[5];
}
Optional<MacAddress> IPAddressV6::getMacAddressFromLinkLocal() const {
// Returned MacAddress must be constructed from a link-local IPv6 address.
if (!isLinkLocal()) {
return folly::none;
}
return getMacAddressFromEUI64();
}
Optional<MacAddress> IPAddressV6::getMacAddressFromEUI64() const {
if (!(addr_.bytes_[11] == 0xff && addr_.bytes_[12] == 0xfe)) {
return folly::none;
}
// The auto configured address uses modified EUI-64 format,
// See RFC 4291 sections 2.5.1, 2.5.6, and Appendix A
std::array<uint8_t, MacAddress::SIZE> bytes;
// Step 1: first 8 bytes are network prefix, and can be stripped
// Step 2: invert the universal/local (U/L) flag (bit 7)
bytes[0] = addr_.bytes_[8] ^ 0x02;
// Step 3: copy these bytes as they are
bytes[1] = addr_.bytes_[9];
bytes[2] = addr_.bytes_[10];
// Step 4: strip bytes (0xfffe), which are bytes_[11] and bytes_[12]
// Step 5: copy the rest.
bytes[3] = addr_.bytes_[13];
bytes[4] = addr_.bytes_[14];
bytes[5] = addr_.bytes_[15];
return Optional<MacAddress>(MacAddress::fromBinary(range(bytes)));
}
IPAddressV6 IPAddressV6::fromBinary(ByteRange bytes) {
auto maybeIp = tryFromBinary(bytes);
if (maybeIp.hasError()) {
throw IPAddressFormatException(to<std::string>(
"Invalid IPv6 binary data: length must be 16 bytes, got ",
bytes.size()));
}
return maybeIp.value();
}
Expected<IPAddressV6, IPAddressFormatError> IPAddressV6::tryFromBinary(
ByteRange bytes) noexcept {
IPAddressV6 addr;
auto setResult = addr.trySetFromBinary(bytes);
if (setResult.hasError()) {
return makeUnexpected(setResult.error());
}
return addr;
}
Expected<Unit, IPAddressFormatError> IPAddressV6::trySetFromBinary(
ByteRange bytes) noexcept {
if (bytes.size() != 16) {
return makeUnexpected(IPAddressFormatError::INVALID_IP);
}
memcpy(&addr_.in6Addr_.s6_addr, bytes.data(), sizeof(in6_addr));
scope_ = 0;
return unit;
}
// static
IPAddressV6 IPAddressV6::fromInverseArpaName(const std::string& arpaname) {
auto piece = StringPiece(arpaname);
if (!piece.removeSuffix(".ip6.arpa")) {
throw IPAddressFormatException(sformat(
"Invalid input. Should end with 'ip6.arpa'. Got '{}'", arpaname));
}
std::vector<StringPiece> pieces;
split(".", piece, pieces);
if (pieces.size() != 32) {
throw IPAddressFormatException(sformat("Invalid input. Got '{}'", piece));
}
std::array<char, IPAddressV6::kToFullyQualifiedSize> ip;
size_t pos = 0;
int count = 0;
for (size_t i = 1; i <= pieces.size(); i++) {
ip[pos] = pieces[pieces.size() - i][0];
pos++;
count++;
// add ':' every 4 chars
if (count == 4 && pos < ip.size()) {
ip[pos++] = ':';
count = 0;
}
}
return IPAddressV6(folly::range(ip));
}
// public
IPAddressV4 IPAddressV6::createIPv4() const {
if (!isIPv4Mapped()) {
throw IPAddressFormatException("addr is not v4-to-v6-mapped");
}
const unsigned char* by = bytes();
return IPAddressV4(detail::Bytes::mkAddress4(&by[12]));
}
// convert two uint8_t bytes into a uint16_t as hibyte.lobyte
static inline uint16_t unpack(uint8_t lobyte, uint8_t hibyte) {
return uint16_t((uint16_t(hibyte) << 8) | lobyte);
}
// given a src string, unpack count*2 bytes into dest
// dest must have as much storage as count
static inline void
unpackInto(const unsigned char* src, uint16_t* dest, size_t count) {
for (size_t i = 0, hi = 1, lo = 0; i < count; i++) {
dest[i] = unpack(src[hi], src[lo]);
hi += 2;
lo += 2;
}
}
// public
IPAddressV4 IPAddressV6::getIPv4For6To4() const {
if (!is6To4()) {
throw IPAddressV6::TypeError(
sformat("Invalid IP '{}': not a 6to4 address", str()));
}
// convert 16x8 bytes into first 4x16 bytes
uint16_t ints[4] = {0, 0, 0, 0};
unpackInto(bytes(), ints, 4);
// repack into 4x8
union {
unsigned char bytes[4];
in_addr addr;
} ipv4;
ipv4.bytes[0] = (uint8_t)((ints[1] & 0xFF00) >> 8);
ipv4.bytes[1] = (uint8_t)(ints[1] & 0x00FF);
ipv4.bytes[2] = (uint8_t)((ints[2] & 0xFF00) >> 8);
ipv4.bytes[3] = (uint8_t)(ints[2] & 0x00FF);
return IPAddressV4(ipv4.addr);
}
// public
bool IPAddressV6::isIPv4Mapped() const {
// v4 mapped addresses have their first 10 bytes set to 0, the next 2 bytes
// set to 255 (0xff);
const unsigned char* by = bytes();
// check if first 10 bytes are 0
for (int i = 0; i < 10; i++) {
if (by[i] != 0x00) {
return false;
}
}
// check if bytes 11 and 12 are 255
return by[10] == 0xff && by[11] == 0xff;
}
// public
IPAddressV6::Type IPAddressV6::type() const {
// convert 16x8 bytes into first 2x16 bytes
uint16_t ints[2] = {0, 0};
unpackInto(bytes(), ints, 2);
if ((((uint32_t)ints[0] << 16) | ints[1]) == IPAddressV6::PREFIX_TEREDO) {
return Type::TEREDO;
}
if ((uint32_t)ints[0] == IPAddressV6::PREFIX_6TO4) {
return Type::T6TO4;
}
return Type::NORMAL;
}
// public
string IPAddressV6::toJson() const {
return sformat("{{family:'AF_INET6', addr:'{}', hash:{}}}", str(), hash());
}
// public
size_t IPAddressV6::hash() const {
if (isIPv4Mapped()) {
/* An IPAddress containing this object would be equal (i.e. operator==)
to an IPAddress containing the corresponding IPv4.
So we must make sure that the hash values are the same as well */
return IPAddress::createIPv4(*this).hash();
}
static const uint64_t seed = AF_INET6;
uint64_t hash1 = 0, hash2 = 0;
hash::SpookyHashV2::Hash128(&addr_, 16, &hash1, &hash2);
return hash::hash_combine(seed, hash1, hash2);
}
// public
bool IPAddressV6::inSubnet(StringPiece cidrNetwork) const {
auto subnetInfo = IPAddress::createNetwork(cidrNetwork);
auto addr = subnetInfo.first;
if (!addr.isV6()) {
throw IPAddressFormatException(
sformat("Address '{}' is not a V6 address", addr.toJson()));
}
return inSubnetWithMask(addr.asV6(), fetchMask(subnetInfo.second));
}
// public
bool IPAddressV6::inSubnetWithMask(
const IPAddressV6& subnet,
const ByteArray16& cidrMask) const {
const auto mask = detail::Bytes::mask(toByteArray(), cidrMask);
const auto subMask = detail::Bytes::mask(subnet.toByteArray(), cidrMask);
return (mask == subMask);
}
// public
bool IPAddressV6::isLoopback() const {
// Check if v4 mapped is loopback
if (isIPv4Mapped() && createIPv4().isLoopback()) {
return true;
}
auto socka = toSockAddr();
return IN6_IS_ADDR_LOOPBACK(&socka.sin6_addr);
}
bool IPAddressV6::isRoutable() const {
return
// 2000::/3 is the only assigned global unicast block
inBinarySubnet({{0x20, 0x00}}, 3) ||
// ffxe::/16 are global scope multicast addresses,
// which are eligible to be routed over the internet
(isMulticast() && getMulticastScope() == 0xe);
}
bool IPAddressV6::isLinkLocalBroadcast() const {
static const IPAddressV6 kLinkLocalBroadcast("ff02::1");
return *this == kLinkLocalBroadcast;
}
// public
bool IPAddressV6::isPrivate() const {
// Check if mapped is private
if (isIPv4Mapped() && createIPv4().isPrivate()) {
return true;
}
return isLoopback() || inBinarySubnet({{0xfc, 0x00}}, 7);
}
// public
bool IPAddressV6::isLinkLocal() const {
return inBinarySubnet({{0xfe, 0x80}}, 10);
}
bool IPAddressV6::isMulticast() const {
return addr_.bytes_[0] == 0xff;
}
uint8_t IPAddressV6::getMulticastFlags() const {
DCHECK(isMulticast());
return uint8_t((addr_.bytes_[1] >> 4) & 0xf);
}
uint8_t IPAddressV6::getMulticastScope() const {
DCHECK(isMulticast());
return uint8_t(addr_.bytes_[1] & 0xf);
}
IPAddressV6 IPAddressV6::getSolicitedNodeAddress() const {
// Solicted node addresses must be constructed from unicast (or anycast)
// addresses
DCHECK(!isMulticast());
uint8_t bytes[16] = {
0xff,
0x02,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x01,
0xff,
addr_.bytes_[13],
addr_.bytes_[14],
addr_.bytes_[15],
};
return IPAddressV6::fromBinary(ByteRange(bytes, 16));
}
// public
IPAddressV6 IPAddressV6::mask(size_t numBits) const {
static const auto bits = bitCount();
if (numBits > bits) {
throw IPAddressFormatException(
sformat("numBits({}) > bitCount({})", numBits, bits));
}
ByteArray16 ba = detail::Bytes::mask(fetchMask(numBits), addr_.bytes_);
return IPAddressV6(ba);
}
// public
string IPAddressV6::str() const {
char buffer[INET6_ADDRSTRLEN + IFNAMSIZ + 1];
if (!inet_ntop(AF_INET6, toAddr().s6_addr, buffer, INET6_ADDRSTRLEN)) {
throw IPAddressFormatException(sformat(
"Invalid address with hex '{}' with error {}",
detail::Bytes::toHex(bytes(), 16),
errnoStr(errno)));
}
auto scopeId = getScopeId();
if (scopeId != 0) {
auto len = strlen(buffer);
buffer[len] = '%';
auto errsv = errno;
if (!if_indextoname(scopeId, buffer + len + 1)) {
// if we can't map the if because eg. it no longer exists,
// append the if index instead
snprintf(buffer + len + 1, IFNAMSIZ, "%u", scopeId);
}
errno = errsv;
}
return string(buffer);
}
// public
string IPAddressV6::toFullyQualified() const {
return detail::fastIpv6ToString(addr_.in6Addr_);
}
// public
void IPAddressV6::toFullyQualifiedAppend(std::string& out) const {
detail::fastIpv6AppendToString(addr_.in6Addr_, out);
}
// public
string IPAddressV6::toInverseArpaName() const {
constexpr folly::StringPiece lut = "0123456789abcdef";
std::array<char, 32> a;
int j = 0;
for (int i = 15; i >= 0; i--) {
a[j] = (lut[bytes()[i] & 0xf]);
a[j + 1] = (lut[bytes()[i] >> 4]);
j += 2;
}
return sformat("{}.ip6.arpa", join(".", a));
}
// public
uint8_t IPAddressV6::getNthMSByte(size_t byteIndex) const {
const auto highestIndex = byteCount() - 1;
if (byteIndex > highestIndex) {
throw std::invalid_argument(sformat(
"Byte index must be <= {} for addresses of type: {}",
highestIndex,
detail::familyNameStr(AF_INET6)));
}
return bytes()[byteIndex];
}
// protected
ByteArray16 IPAddressV6::fetchMask(size_t numBits) {
static const size_t bits = bitCount();
if (numBits > bits) {
throw IPAddressFormatException("IPv6 addresses are 128 bits.");
}
if (numBits == 0) {
return {{0}};
}
constexpr auto _0s = uint64_t(0);
constexpr auto _1s = ~_0s;
auto const fragment = Endian::big(_1s << ((128 - numBits) % 64));
auto const hi = numBits <= 64 ? fragment : _1s;
auto const lo = numBits <= 64 ? _0s : fragment;
uint64_t const parts[] = {hi, lo};
ByteArray16 arr;
std::memcpy(arr.data(), parts, sizeof(parts));
return arr;
}
// public static
CIDRNetworkV6 IPAddressV6::longestCommonPrefix(
const CIDRNetworkV6& one,
const CIDRNetworkV6& two) {
auto prefix = detail::Bytes::longestCommonPrefix(
one.first.addr_.bytes_, one.second, two.first.addr_.bytes_, two.second);
return {IPAddressV6(prefix.first), prefix.second};
}
// protected
bool IPAddressV6::inBinarySubnet(
const std::array<uint8_t, 2> addr,
size_t numBits) const {
auto masked = mask(numBits);
return (std::memcmp(addr.data(), masked.bytes(), 2) == 0);
}
} // namespace folly