verdnatura-chat/ios/Pods/boost-for-react-native/boost/lambda/detail/ret.hpp

326 lines
10 KiB
C++

// Boost Lambda Library ret.hpp -----------------------------------------
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see www.boost.org
#ifndef BOOST_LAMBDA_RET_HPP
#define BOOST_LAMBDA_RET_HPP
namespace boost {
namespace lambda {
// TODO:
// Add specializations for function references for ret, protect and unlambda
// e.g void foo(); unlambda(foo); fails, as it would add a const qualifier
// for a function type.
// on the other hand unlambda(*foo) does work
// -- ret -------------------------
// the explicit return type template
// TODO: It'd be nice to make ret a nop for other than lambda functors
// but causes an ambiguiyty with gcc (not with KCC), check what is the
// right interpretation.
// // ret for others than lambda functors has no effect
// template <class U, class T>
// inline const T& ret(const T& t) { return t; }
template<class RET, class Arg>
inline const
lambda_functor<
lambda_functor_base<
explicit_return_type_action<RET>,
tuple<lambda_functor<Arg> >
>
>
ret(const lambda_functor<Arg>& a1)
{
return
lambda_functor_base<
explicit_return_type_action<RET>,
tuple<lambda_functor<Arg> >
>
(tuple<lambda_functor<Arg> >(a1));
}
// protect ------------------
// protecting others than lambda functors has no effect
template <class T>
inline const T& protect(const T& t) { return t; }
template<class Arg>
inline const
lambda_functor<
lambda_functor_base<
protect_action,
tuple<lambda_functor<Arg> >
>
>
protect(const lambda_functor<Arg>& a1)
{
return
lambda_functor_base<
protect_action,
tuple<lambda_functor<Arg> >
>
(tuple<lambda_functor<Arg> >(a1));
}
// -------------------------------------------------------------------
// Hides the lambda functorness of a lambda functor.
// After this, the functor is immune to argument substitution, etc.
// This can be used, e.g. to make it safe to pass lambda functors as
// arguments to functions, which might use them as target functions
// note, unlambda and protect are different things. Protect hides the lambda
// functor for one application, unlambda for good.
template <class LambdaFunctor>
class non_lambda_functor
{
LambdaFunctor lf;
public:
// This functor defines the result_type typedef.
// The result type must be deducible without knowing the arguments
template <class SigArgs> struct sig {
typedef typename
LambdaFunctor::inherited::
template sig<typename SigArgs::tail_type>::type type;
};
explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {}
typename LambdaFunctor::nullary_return_type
operator()() const {
return lf.template
call<typename LambdaFunctor::nullary_return_type>
(cnull_type(), cnull_type(), cnull_type(), cnull_type());
}
template<class A>
typename sig<tuple<const non_lambda_functor, A&> >::type
operator()(A& a) const {
return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
}
template<class A, class B>
typename sig<tuple<const non_lambda_functor, A&, B&> >::type
operator()(A& a, B& b) const {
return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type());
}
template<class A, class B, class C>
typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type
operator()(A& a, B& b, C& c) const {
return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type());
}
};
template <class Arg>
inline const Arg& unlambda(const Arg& a) { return a; }
template <class Arg>
inline const non_lambda_functor<lambda_functor<Arg> >
unlambda(const lambda_functor<Arg>& a)
{
return non_lambda_functor<lambda_functor<Arg> >(a);
}
// Due to a language restriction, lambda functors cannot be made to
// accept non-const rvalue arguments. Usually iterators do not return
// temporaries, but sometimes they do. That's why a workaround is provided.
// Note, that this potentially breaks const correctness, so be careful!
// any lambda functor can be turned into a const_incorrect_lambda_functor
// The operator() takes arguments as consts and then casts constness
// away. So this breaks const correctness!!! but is a necessary workaround
// in some cases due to language limitations.
// Note, that this is not a lambda_functor anymore, so it can not be used
// as a sub lambda expression.
template <class LambdaFunctor>
struct const_incorrect_lambda_functor {
LambdaFunctor lf;
public:
explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {}
template <class SigArgs> struct sig {
typedef typename
LambdaFunctor::inherited::template
sig<typename SigArgs::tail_type>::type type;
};
// The nullary case is not needed (no arguments, no parameter type problems)
template<class A>
typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type
operator()(const A& a) const {
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type());
}
template<class A, class B>
typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type
operator()(const A& a, const B& b) const {
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type());
}
template<class A, class B, class C>
typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type
operator()(const A& a, const B& b, const C& c) const {
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type());
}
};
// ------------------------------------------------------------------------
// any lambda functor can be turned into a const_parameter_lambda_functor
// The operator() takes arguments as const.
// This is useful if lambda functors are called with non-const rvalues.
// Note, that this is not a lambda_functor anymore, so it can not be used
// as a sub lambda expression.
template <class LambdaFunctor>
struct const_parameter_lambda_functor {
LambdaFunctor lf;
public:
explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {}
template <class SigArgs> struct sig {
typedef typename
LambdaFunctor::inherited::template
sig<typename SigArgs::tail_type>::type type;
};
// The nullary case is not needed: no arguments, no constness problems.
template<class A>
typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type
operator()(const A& a) const {
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
}
template<class A, class B>
typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type
operator()(const A& a, const B& b) const {
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type());
}
template<class A, class B, class C>
typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&>
>::type
operator()(const A& a, const B& b, const C& c) const {
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type());
}
};
template <class Arg>
inline const const_incorrect_lambda_functor<lambda_functor<Arg> >
break_const(const lambda_functor<Arg>& lf)
{
return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf);
}
template <class Arg>
inline const const_parameter_lambda_functor<lambda_functor<Arg> >
const_parameters(const lambda_functor<Arg>& lf)
{
return const_parameter_lambda_functor<lambda_functor<Arg> >(lf);
}
// make void ------------------------------------------------
// make_void( x ) turns a lambda functor x with some return type y into
// another lambda functor, which has a void return type
// when called, the original return type is discarded
// we use this action. The action class will be called, which means that
// the wrapped lambda functor is evaluated, but we just don't do anything
// with the result.
struct voidifier_action {
template<class Ret, class A> static void apply(A&) {}
};
template<class Args> struct return_type_N<voidifier_action, Args> {
typedef void type;
};
template<class Arg1>
inline const
lambda_functor<
lambda_functor_base<
action<1, voidifier_action>,
tuple<lambda_functor<Arg1> >
>
>
make_void(const lambda_functor<Arg1>& a1) {
return
lambda_functor_base<
action<1, voidifier_action>,
tuple<lambda_functor<Arg1> >
>
(tuple<lambda_functor<Arg1> > (a1));
}
// for non-lambda functors, make_void does nothing
// (the argument gets evaluated immediately)
template<class Arg1>
inline const
lambda_functor<
lambda_functor_base<do_nothing_action, null_type>
>
make_void(const Arg1&) {
return
lambda_functor_base<do_nothing_action, null_type>();
}
// std_functor -----------------------------------------------------
// The STL uses the result_type typedef as the convention to let binders know
// the return type of a function object.
// LL uses the sig template.
// To let LL know that the function object has the result_type typedef
// defined, it can be wrapped with the std_functor function.
// Just inherit form the template parameter (the standard functor),
// and provide a sig template. So we have a class which is still the
// same functor + the sig template.
template<class T>
struct result_type_to_sig : public T {
template<class Args> struct sig { typedef typename T::result_type type; };
result_type_to_sig(const T& t) : T(t) {}
};
template<class F>
inline result_type_to_sig<F> std_functor(const F& f) { return f; }
} // namespace lambda
} // namespace boost
#endif