verdnatura-chat/ios/Pods/boost-for-react-native/boost/container/vector.hpp

3402 lines
139 KiB
C++

//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2015. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP
#define BOOST_CONTAINER_CONTAINER_VECTOR_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
// container
#include <boost/container/container_fwd.hpp>
#include <boost/container/allocator_traits.hpp>
#include <boost/container/new_allocator.hpp> //new_allocator
#include <boost/container/throw_exception.hpp>
// container detail
#include <boost/container/detail/advanced_insert_int.hpp>
#include <boost/container/detail/algorithm.hpp> //equal()
#include <boost/container/detail/alloc_helpers.hpp>
#include <boost/container/detail/allocation_type.hpp>
#include <boost/container/detail/copy_move_algo.hpp>
#include <boost/container/detail/destroyers.hpp>
#include <boost/container/detail/iterator.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/iterator_to_raw_pointer.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/detail/next_capacity.hpp>
#include <boost/container/detail/to_raw_pointer.hpp>
#include <boost/container/detail/type_traits.hpp>
#include <boost/container/detail/version_type.hpp>
// intrusive
#include <boost/intrusive/pointer_traits.hpp>
// move
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/iterator.hpp>
#include <boost/move/traits.hpp>
#include <boost/move/utility_core.hpp>
// move/detail
#if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#include <boost/move/detail/fwd_macros.hpp>
#endif
#include <boost/move/detail/move_helpers.hpp>
// other
#include <boost/core/no_exceptions_support.hpp>
#include <boost/assert.hpp>
#include <boost/cstdint.hpp>
//std
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
#include <initializer_list> //for std::initializer_list
#endif
namespace boost {
namespace container {
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//#define BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
namespace container_detail {
#ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
template <class Pointer, bool IsConst>
class vec_iterator
{
public:
typedef std::random_access_iterator_tag iterator_category;
typedef typename boost::intrusive::pointer_traits<Pointer>::element_type value_type;
typedef typename boost::intrusive::pointer_traits<Pointer>::difference_type difference_type;
typedef typename if_c
< IsConst
, typename boost::intrusive::pointer_traits<Pointer>::template
rebind_pointer<const value_type>::type
, Pointer
>::type pointer;
typedef typename boost::intrusive::pointer_traits<pointer> ptr_traits;
typedef typename ptr_traits::reference reference;
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
private:
Pointer m_ptr;
public:
BOOST_CONTAINER_FORCEINLINE const Pointer &get_ptr() const BOOST_NOEXCEPT_OR_NOTHROW
{ return m_ptr; }
BOOST_CONTAINER_FORCEINLINE Pointer &get_ptr() BOOST_NOEXCEPT_OR_NOTHROW
{ return m_ptr; }
BOOST_CONTAINER_FORCEINLINE explicit vec_iterator(Pointer ptr) BOOST_NOEXCEPT_OR_NOTHROW
: m_ptr(ptr)
{}
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
//Constructors
BOOST_CONTAINER_FORCEINLINE vec_iterator() BOOST_NOEXCEPT_OR_NOTHROW
: m_ptr() //Value initialization to achieve "null iterators" (N3644)
{}
BOOST_CONTAINER_FORCEINLINE vec_iterator(vec_iterator<Pointer, false> const& other) BOOST_NOEXCEPT_OR_NOTHROW
: m_ptr(other.get_ptr())
{}
//Pointer like operators
BOOST_CONTAINER_FORCEINLINE reference operator*() const BOOST_NOEXCEPT_OR_NOTHROW
{ return *m_ptr; }
BOOST_CONTAINER_FORCEINLINE pointer operator->() const BOOST_NOEXCEPT_OR_NOTHROW
{ return ::boost::intrusive::pointer_traits<pointer>::pointer_to(this->operator*()); }
BOOST_CONTAINER_FORCEINLINE reference operator[](difference_type off) const BOOST_NOEXCEPT_OR_NOTHROW
{ return m_ptr[off]; }
//Increment / Decrement
BOOST_CONTAINER_FORCEINLINE vec_iterator& operator++() BOOST_NOEXCEPT_OR_NOTHROW
{ ++m_ptr; return *this; }
BOOST_CONTAINER_FORCEINLINE vec_iterator operator++(int) BOOST_NOEXCEPT_OR_NOTHROW
{ return vec_iterator(m_ptr++); }
BOOST_CONTAINER_FORCEINLINE vec_iterator& operator--() BOOST_NOEXCEPT_OR_NOTHROW
{ --m_ptr; return *this; }
BOOST_CONTAINER_FORCEINLINE vec_iterator operator--(int) BOOST_NOEXCEPT_OR_NOTHROW
{ return vec_iterator(m_ptr--); }
//Arithmetic
BOOST_CONTAINER_FORCEINLINE vec_iterator& operator+=(difference_type off) BOOST_NOEXCEPT_OR_NOTHROW
{ m_ptr += off; return *this; }
BOOST_CONTAINER_FORCEINLINE vec_iterator& operator-=(difference_type off) BOOST_NOEXCEPT_OR_NOTHROW
{ m_ptr -= off; return *this; }
BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator+(const vec_iterator &x, difference_type off) BOOST_NOEXCEPT_OR_NOTHROW
{ return vec_iterator(x.m_ptr+off); }
BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator+(difference_type off, vec_iterator right) BOOST_NOEXCEPT_OR_NOTHROW
{ right.m_ptr += off; return right; }
BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator-(vec_iterator left, difference_type off) BOOST_NOEXCEPT_OR_NOTHROW
{ left.m_ptr -= off; return left; }
BOOST_CONTAINER_FORCEINLINE friend difference_type operator-(const vec_iterator &left, const vec_iterator& right) BOOST_NOEXCEPT_OR_NOTHROW
{ return left.m_ptr - right.m_ptr; }
//Comparison operators
BOOST_CONTAINER_FORCEINLINE friend bool operator== (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return l.m_ptr == r.m_ptr; }
BOOST_CONTAINER_FORCEINLINE friend bool operator!= (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return l.m_ptr != r.m_ptr; }
BOOST_CONTAINER_FORCEINLINE friend bool operator< (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return l.m_ptr < r.m_ptr; }
BOOST_CONTAINER_FORCEINLINE friend bool operator<= (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return l.m_ptr <= r.m_ptr; }
BOOST_CONTAINER_FORCEINLINE friend bool operator> (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return l.m_ptr > r.m_ptr; }
BOOST_CONTAINER_FORCEINLINE friend bool operator>= (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return l.m_ptr >= r.m_ptr; }
};
template<class BiDirPosConstIt, class BiDirValueIt>
struct vector_insert_ordered_cursor
{
typedef typename iterator_traits<BiDirPosConstIt>::value_type size_type;
typedef typename iterator_traits<BiDirValueIt>::reference reference;
BOOST_CONTAINER_FORCEINLINE vector_insert_ordered_cursor(BiDirPosConstIt posit, BiDirValueIt valueit)
: last_position_it(posit), last_value_it(valueit)
{}
void operator --()
{
--last_value_it;
--last_position_it;
while(this->get_pos() == size_type(-1)){
--last_value_it;
--last_position_it;
}
}
BOOST_CONTAINER_FORCEINLINE size_type get_pos() const
{ return *last_position_it; }
BOOST_CONTAINER_FORCEINLINE reference get_val()
{ return *last_value_it; }
BiDirPosConstIt last_position_it;
BiDirValueIt last_value_it;
};
template<class T, class SizeType, class BiDirValueIt, class Comp>
struct vector_merge_cursor
{
typedef SizeType size_type;
typedef typename iterator_traits<BiDirValueIt>::reference reference;
BOOST_CONTAINER_FORCEINLINE vector_merge_cursor(T *pbeg, T *plast, BiDirValueIt valueit, Comp &cmp)
: m_pbeg(pbeg), m_pcur(--plast), m_valueit(valueit), m_cmp(cmp)
{}
void operator --()
{
--m_valueit;
const T &t = *m_valueit;
while((m_pcur + 1) != m_pbeg){
if(!m_cmp(t, *m_pcur)){
break;
}
--m_pcur;
}
}
BOOST_CONTAINER_FORCEINLINE size_type get_pos() const
{ return static_cast<size_type>((m_pcur + 1) - m_pbeg); }
BOOST_CONTAINER_FORCEINLINE reference get_val()
{ return *m_valueit; }
T *const m_pbeg;
T *m_pcur;
BiDirValueIt m_valueit;
Comp &m_cmp;
};
} //namespace container_detail {
template<class Pointer, bool IsConst>
BOOST_CONTAINER_FORCEINLINE const Pointer &vector_iterator_get_ptr(const container_detail::vec_iterator<Pointer, IsConst> &it) BOOST_NOEXCEPT_OR_NOTHROW
{ return it.get_ptr(); }
template<class Pointer, bool IsConst>
BOOST_CONTAINER_FORCEINLINE Pointer &get_ptr(container_detail::vec_iterator<Pointer, IsConst> &it) BOOST_NOEXCEPT_OR_NOTHROW
{ return it.get_ptr(); }
namespace container_detail {
#else //ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
template< class MaybeConstPointer
, bool ElementTypeIsConst
= is_const< typename boost::intrusive::pointer_traits<MaybeConstPointer>::element_type>::value >
struct vector_get_ptr_pointer_to_non_const
{
typedef MaybeConstPointer const_pointer;
typedef boost::intrusive::pointer_traits<const_pointer> pointer_traits_t;
typedef typename pointer_traits_t::element_type element_type;
typedef typename remove_const<element_type>::type non_const_element_type;
typedef typename pointer_traits_t
::template rebind_pointer<non_const_element_type>::type return_type;
BOOST_CONTAINER_FORCEINLINE static return_type get_ptr(const const_pointer &ptr) BOOST_NOEXCEPT_OR_NOTHROW
{ return boost::intrusive::pointer_traits<return_type>::const_cast_from(ptr); }
};
template<class Pointer>
struct vector_get_ptr_pointer_to_non_const<Pointer, false>
{
typedef const Pointer & return_type;
BOOST_CONTAINER_FORCEINLINE static return_type get_ptr(const Pointer &ptr) BOOST_NOEXCEPT_OR_NOTHROW
{ return ptr; }
};
} //namespace container_detail {
template<class MaybeConstPointer>
BOOST_CONTAINER_FORCEINLINE typename container_detail::vector_get_ptr_pointer_to_non_const<MaybeConstPointer>::return_type
vector_iterator_get_ptr(const MaybeConstPointer &ptr) BOOST_NOEXCEPT_OR_NOTHROW
{
return container_detail::vector_get_ptr_pointer_to_non_const<MaybeConstPointer>::get_ptr(ptr);
}
namespace container_detail {
#endif //#ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
struct uninitialized_size_t {};
static const uninitialized_size_t uninitialized_size = uninitialized_size_t();
template <class T>
struct vector_value_traits_base
{
static const bool trivial_dctr = is_trivially_destructible<T>::value;
static const bool trivial_dctr_after_move = has_trivial_destructor_after_move<T>::value;
static const bool trivial_copy = is_trivially_copy_constructible<T>::value;
static const bool nothrow_copy = is_nothrow_copy_constructible<T>::value || trivial_copy;
static const bool trivial_assign = is_trivially_copy_assignable<T>::value;
static const bool nothrow_assign = is_nothrow_copy_assignable<T>::value || trivial_assign;
};
template <class Allocator>
struct vector_value_traits
: public vector_value_traits_base<typename Allocator::value_type>
{
typedef vector_value_traits_base<typename Allocator::value_type> base_t;
//This is the anti-exception array destructor
//to deallocate values already constructed
typedef typename container_detail::if_c
<base_t::trivial_dctr
,container_detail::null_scoped_destructor_n<Allocator>
,container_detail::scoped_destructor_n<Allocator>
>::type ArrayDestructor;
//This is the anti-exception array deallocator
typedef container_detail::scoped_array_deallocator<Allocator> ArrayDeallocator;
};
//!This struct deallocates and allocated memory
template < class Allocator
, class AllocatorVersion = typename container_detail::version<Allocator>::type
>
struct vector_alloc_holder
: public Allocator
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)
public:
typedef Allocator allocator_type;
typedef boost::container::allocator_traits<Allocator> allocator_traits_type;
typedef typename allocator_traits_type::pointer pointer;
typedef typename allocator_traits_type::size_type size_type;
typedef typename allocator_traits_type::value_type value_type;
static bool is_propagable_from(const allocator_type &from_alloc, pointer p, const allocator_type &to_alloc, bool const propagate_allocator)
{
(void)propagate_allocator; (void)p; (void)to_alloc; (void)from_alloc;
const bool all_storage_propagable = !allocator_traits_type::is_partially_propagable::value ||
!allocator_traits_type::storage_is_unpropagable(from_alloc, p);
return all_storage_propagable && (propagate_allocator || allocator_traits_type::equal(from_alloc, to_alloc));
}
static bool are_swap_propagable(const allocator_type &l_a, pointer l_p, const allocator_type &r_a, pointer r_p, bool const propagate_allocator)
{
(void)propagate_allocator; (void)l_p; (void)r_p; (void)l_a; (void)r_a;
const bool all_storage_propagable = !allocator_traits_type::is_partially_propagable::value ||
!(allocator_traits_type::storage_is_unpropagable(l_a, l_p) || allocator_traits_type::storage_is_unpropagable(r_a, r_p));
return all_storage_propagable && (propagate_allocator || allocator_traits_type::equal(l_a, r_a));
}
//Constructor, does not throw
vector_alloc_holder()
BOOST_NOEXCEPT_IF(container_detail::is_nothrow_default_constructible<Allocator>::value)
: Allocator(), m_start(), m_size(), m_capacity()
{}
//Constructor, does not throw
template<class AllocConvertible>
explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_NOEXCEPT_OR_NOTHROW
: Allocator(boost::forward<AllocConvertible>(a)), m_start(), m_size(), m_capacity()
{}
//Constructor, does not throw
template<class AllocConvertible>
vector_alloc_holder(uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, size_type initial_size)
: Allocator(boost::forward<AllocConvertible>(a))
, m_start()
, m_size(initial_size) //Size is initialized here so vector should only call uninitialized_xxx after this
, m_capacity()
{
if(initial_size){
pointer reuse = pointer();
m_start = this->allocation_command(allocate_new, initial_size, m_capacity = initial_size, reuse);
}
}
//Constructor, does not throw
vector_alloc_holder(uninitialized_size_t, size_type initial_size)
: Allocator()
, m_start()
, m_size(initial_size) //Size is initialized here so vector should only call uninitialized_xxx after this
, m_capacity()
{
if(initial_size){
pointer reuse = pointer();
m_start = this->allocation_command(allocate_new, initial_size, m_capacity = initial_size, reuse);
}
}
vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder) BOOST_NOEXCEPT_OR_NOTHROW
: Allocator(BOOST_MOVE_BASE(Allocator, holder))
, m_start(holder.m_start)
, m_size(holder.m_size)
, m_capacity(holder.m_capacity)
{
holder.m_start = pointer();
holder.m_size = holder.m_capacity = 0;
}
vector_alloc_holder(pointer p, size_type capacity, BOOST_RV_REF(vector_alloc_holder) holder)
: Allocator(BOOST_MOVE_BASE(Allocator, holder))
, m_start(p)
, m_size(holder.m_size)
, m_capacity(capacity)
{
allocator_type &this_alloc = this->alloc();
allocator_type &x_alloc = holder.alloc();
if(this->is_propagable_from(x_alloc, holder.start(), this_alloc, true)){
if(this->m_capacity){
this->alloc().deallocate(this->m_start, this->m_capacity);
}
m_start = holder.m_start;
m_capacity = holder.m_capacity;
holder.m_start = pointer();
holder.m_capacity = holder.m_size = 0;
}
else if(this->m_capacity < holder.m_size){
size_type const n = holder.m_size;
pointer reuse = pointer();
m_start = this->allocation_command(allocate_new, n, m_capacity = n, reuse);
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
this->num_alloc += n != 0;
#endif
}
}
vector_alloc_holder(pointer p, size_type n)
BOOST_NOEXCEPT_IF(container_detail::is_nothrow_default_constructible<Allocator>::value)
: Allocator()
, m_start(p)
, m_size()
, m_capacity(n)
{}
template<class AllocFwd>
vector_alloc_holder(pointer p, size_type n, BOOST_FWD_REF(AllocFwd) a)
: Allocator(::boost::forward<AllocFwd>(a))
, m_start(p)
, m_size()
, m_capacity(n)
{}
BOOST_CONTAINER_FORCEINLINE ~vector_alloc_holder() BOOST_NOEXCEPT_OR_NOTHROW
{
if(this->m_capacity){
this->alloc().deallocate(this->m_start, this->m_capacity);
}
}
BOOST_CONTAINER_FORCEINLINE pointer allocation_command(boost::container::allocation_type command,
size_type limit_size, size_type &prefer_in_recvd_out_size, pointer &reuse)
{
typedef typename container_detail::version<Allocator>::type alloc_version;
return this->priv_allocation_command(alloc_version(), command, limit_size, prefer_in_recvd_out_size, reuse);
}
bool try_expand_fwd(size_type at_least)
{
//There is not enough memory, try to expand the old one
const size_type new_cap = this->capacity() + at_least;
size_type real_cap = new_cap;
pointer reuse = this->start();
bool const success = !!this->allocation_command(expand_fwd, new_cap, real_cap, reuse);
//Check for forward expansion
if(success){
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_fwd;
#endif
this->capacity(real_cap);
}
return success;
}
BOOST_CONTAINER_FORCEINLINE size_type next_capacity(size_type additional_objects) const
{
return next_capacity_calculator
<size_type, NextCapacityDouble //NextCapacity60Percent
>::get( allocator_traits_type::max_size(this->alloc())
, this->m_capacity, additional_objects );
}
pointer m_start;
size_type m_size;
size_type m_capacity;
void swap_resources(vector_alloc_holder &x) BOOST_NOEXCEPT_OR_NOTHROW
{
boost::adl_move_swap(this->m_start, x.m_start);
boost::adl_move_swap(this->m_size, x.m_size);
boost::adl_move_swap(this->m_capacity, x.m_capacity);
}
void steal_resources(vector_alloc_holder &x) BOOST_NOEXCEPT_OR_NOTHROW
{
this->m_start = x.m_start;
this->m_size = x.m_size;
this->m_capacity = x.m_capacity;
x.m_start = pointer();
x.m_size = x.m_capacity = 0;
}
BOOST_CONTAINER_FORCEINLINE Allocator &alloc() BOOST_NOEXCEPT_OR_NOTHROW
{ return *this; }
BOOST_CONTAINER_FORCEINLINE const Allocator &alloc() const BOOST_NOEXCEPT_OR_NOTHROW
{ return *this; }
const pointer &start() const BOOST_NOEXCEPT_OR_NOTHROW { return m_start; }
const size_type &capacity() const BOOST_NOEXCEPT_OR_NOTHROW { return m_capacity; }
void start(const pointer &p) BOOST_NOEXCEPT_OR_NOTHROW { m_start = p; }
void capacity(const size_type &c) BOOST_NOEXCEPT_OR_NOTHROW { m_capacity = c; }
private:
void priv_first_allocation(size_type cap)
{
if(cap){
pointer reuse = pointer();
m_start = this->allocation_command(allocate_new, cap, cap, reuse);
m_capacity = cap;
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
}
}
BOOST_CONTAINER_FORCEINLINE pointer priv_allocation_command(version_1, boost::container::allocation_type command,
size_type ,
size_type &prefer_in_recvd_out_size,
pointer &reuse)
{
(void)command;
BOOST_ASSERT( (command & allocate_new));
BOOST_ASSERT(!(command & nothrow_allocation));
pointer const p = allocator_traits_type::allocate(this->alloc(), prefer_in_recvd_out_size, reuse);
reuse = pointer();
return p;
}
pointer priv_allocation_command(version_2, boost::container::allocation_type command,
size_type limit_size,
size_type &prefer_in_recvd_out_size,
pointer &reuse)
{
return this->alloc().allocation_command(command, limit_size, prefer_in_recvd_out_size, reuse);
}
};
//!This struct deallocates and allocated memory
template <class Allocator>
struct vector_alloc_holder<Allocator, version_0>
: public Allocator
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)
public:
typedef boost::container::allocator_traits<Allocator> allocator_traits_type;
typedef typename allocator_traits_type::pointer pointer;
typedef typename allocator_traits_type::size_type size_type;
typedef typename allocator_traits_type::value_type value_type;
template <class OtherAllocator, class OtherAllocatorVersion>
friend struct vector_alloc_holder;
//Constructor, does not throw
vector_alloc_holder()
BOOST_NOEXCEPT_IF(container_detail::is_nothrow_default_constructible<Allocator>::value)
: Allocator(), m_size()
{}
//Constructor, does not throw
template<class AllocConvertible>
explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_NOEXCEPT_OR_NOTHROW
: Allocator(boost::forward<AllocConvertible>(a)), m_size()
{}
//Constructor, does not throw
template<class AllocConvertible>
vector_alloc_holder(uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, size_type initial_size)
: Allocator(boost::forward<AllocConvertible>(a))
, m_size(initial_size) //Size is initialized here...
{
//... and capacity here, so vector, must call uninitialized_xxx in the derived constructor
this->priv_first_allocation(initial_size);
}
//Constructor, does not throw
vector_alloc_holder(uninitialized_size_t, size_type initial_size)
: Allocator()
, m_size(initial_size) //Size is initialized here...
{
//... and capacity here, so vector, must call uninitialized_xxx in the derived constructor
this->priv_first_allocation(initial_size);
}
vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder)
: Allocator(BOOST_MOVE_BASE(Allocator, holder))
, m_size(holder.m_size) //Size is initialized here so vector should only call uninitialized_xxx after this
{
::boost::container::uninitialized_move_alloc_n
(this->alloc(), container_detail::to_raw_pointer(holder.start()), m_size, container_detail::to_raw_pointer(this->start()));
}
template<class OtherAllocator, class OtherAllocatorVersion>
vector_alloc_holder(BOOST_RV_REF_BEG vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> BOOST_RV_REF_END holder)
: Allocator()
, m_size(holder.m_size) //Initialize it to m_size as first_allocation can only succeed or abort
{
//Different allocator type so we must check we have enough storage
const size_type n = holder.m_size;
this->priv_first_allocation(n);
::boost::container::uninitialized_move_alloc_n
(this->alloc(), container_detail::to_raw_pointer(holder.start()), n, container_detail::to_raw_pointer(this->start()));
}
BOOST_CONTAINER_FORCEINLINE void priv_first_allocation(size_type cap)
{
if(cap > Allocator::internal_capacity){
throw_bad_alloc();
}
}
BOOST_CONTAINER_FORCEINLINE void deep_swap(vector_alloc_holder &x)
{
this->priv_deep_swap(x);
}
template<class OtherAllocator, class OtherAllocatorVersion>
void deep_swap(vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> &x)
{
if(this->m_size > OtherAllocator::internal_capacity || x.m_size > Allocator::internal_capacity){
throw_bad_alloc();
}
this->priv_deep_swap(x);
}
BOOST_CONTAINER_FORCEINLINE void swap_resources(vector_alloc_holder &) BOOST_NOEXCEPT_OR_NOTHROW
{ //Containers with version 0 allocators can't be moved without moving elements one by one
throw_bad_alloc();
}
BOOST_CONTAINER_FORCEINLINE void steal_resources(vector_alloc_holder &)
{ //Containers with version 0 allocators can't be moved without moving elements one by one
throw_bad_alloc();
}
BOOST_CONTAINER_FORCEINLINE Allocator &alloc() BOOST_NOEXCEPT_OR_NOTHROW
{ return *this; }
BOOST_CONTAINER_FORCEINLINE const Allocator &alloc() const BOOST_NOEXCEPT_OR_NOTHROW
{ return *this; }
BOOST_CONTAINER_FORCEINLINE bool try_expand_fwd(size_type at_least)
{ return !at_least; }
BOOST_CONTAINER_FORCEINLINE pointer start() const BOOST_NOEXCEPT_OR_NOTHROW { return Allocator::internal_storage(); }
BOOST_CONTAINER_FORCEINLINE size_type capacity() const BOOST_NOEXCEPT_OR_NOTHROW { return Allocator::internal_capacity; }
size_type m_size;
private:
template<class OtherAllocator, class OtherAllocatorVersion>
void priv_deep_swap(vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> &x)
{
const size_type MaxTmpStorage = sizeof(value_type)*Allocator::internal_capacity;
value_type *const first_this = container_detail::to_raw_pointer(this->start());
value_type *const first_x = container_detail::to_raw_pointer(x.start());
if(this->m_size < x.m_size){
boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_this, this->m_size, first_x, x.m_size);
}
else{
boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_x, x.m_size, first_this, this->m_size);
}
boost::adl_move_swap(this->m_size, x.m_size);
}
};
} //namespace container_detail {
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//! A vector is a sequence that supports random access to elements, constant
//! time insertion and removal of elements at the end, and linear time insertion
//! and removal of elements at the beginning or in the middle. The number of
//! elements in a vector may vary dynamically; memory management is automatic.
//!
//! \tparam T The type of object that is stored in the vector
//! \tparam Allocator The allocator used for all internal memory management
template <class T, class Allocator BOOST_CONTAINER_DOCONLY(= new_allocator<T>) >
class vector
{
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
struct value_less
{
typedef typename boost::container::allocator_traits<Allocator>::value_type value_type;
bool operator()(const value_type &a, const value_type &b) const
{ return a < b; }
};
typedef typename container_detail::version<Allocator>::type alloc_version;
typedef boost::container::container_detail::vector_alloc_holder<Allocator> alloc_holder_t;
alloc_holder_t m_holder;
typedef allocator_traits<Allocator> allocator_traits_type;
template <class U, class UAllocator>
friend class vector;
typedef typename allocator_traits_type::pointer pointer_impl;
typedef container_detail::vec_iterator<pointer_impl, false> iterator_impl;
typedef container_detail::vec_iterator<pointer_impl, true > const_iterator_impl;
protected:
static bool is_propagable_from(const Allocator &from_alloc, pointer_impl p, const Allocator &to_alloc, bool const propagate_allocator)
{ return alloc_holder_t::is_propagable_from(from_alloc, p, to_alloc, propagate_allocator); }
static bool are_swap_propagable( const Allocator &l_a, pointer_impl l_p
, const Allocator &r_a, pointer_impl r_p, bool const propagate_allocator)
{ return alloc_holder_t::are_swap_propagable(l_a, l_p, r_a, r_p, propagate_allocator); }
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
//////////////////////////////////////////////
//
// types
//
//////////////////////////////////////////////
typedef T value_type;
typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::reference reference;
typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference;
typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type;
typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type;
typedef Allocator allocator_type;
typedef Allocator stored_allocator_type;
#if defined BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
typedef BOOST_CONTAINER_IMPDEF(pointer) iterator;
typedef BOOST_CONTAINER_IMPDEF(const_pointer) const_iterator;
#else
typedef BOOST_CONTAINER_IMPDEF(iterator_impl) iterator;
typedef BOOST_CONTAINER_IMPDEF(const_iterator_impl) const_iterator;
#endif
typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator<iterator>) reverse_iterator;
typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator<const_iterator>) const_reverse_iterator;
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
private:
BOOST_COPYABLE_AND_MOVABLE(vector)
typedef container_detail::vector_value_traits<Allocator> value_traits;
typedef constant_iterator<T, difference_type> cvalue_iterator;
protected:
BOOST_CONTAINER_FORCEINLINE void steal_resources(vector &x)
{ return this->m_holder.steal_resources(x.m_holder); }
struct initial_capacity_t{};
template<class AllocFwd>
BOOST_CONTAINER_FORCEINLINE vector(initial_capacity_t, pointer initial_memory, size_type capacity, BOOST_FWD_REF(AllocFwd) a)
: m_holder(initial_memory, capacity, ::boost::forward<AllocFwd>(a))
{}
BOOST_CONTAINER_FORCEINLINE vector(initial_capacity_t, pointer initial_memory, size_type capacity)
: m_holder(initial_memory, capacity)
{}
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
//////////////////////////////////////////////
//
// construct/copy/destroy
//
//////////////////////////////////////////////
//! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
vector() BOOST_NOEXCEPT_IF(container_detail::is_nothrow_default_constructible<Allocator>::value)
: m_holder()
{}
//! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
explicit vector(const allocator_type& a) BOOST_NOEXCEPT_OR_NOTHROW
: m_holder(a)
{}
//! <b>Effects</b>: Constructs a vector and inserts n value initialized values.
//!
//! <b>Throws</b>: If allocator_type's allocation
//! throws or T's value initialization throws.
//!
//! <b>Complexity</b>: Linear to n.
explicit vector(size_type n)
: m_holder(container_detail::uninitialized_size, n)
{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
this->num_alloc += n != 0;
#endif
boost::container::uninitialized_value_init_alloc_n
(this->m_holder.alloc(), n, this->priv_raw_begin());
}
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts n value initialized values.
//!
//! <b>Throws</b>: If allocator_type's allocation
//! throws or T's value initialization throws.
//!
//! <b>Complexity</b>: Linear to n.
explicit vector(size_type n, const allocator_type &a)
: m_holder(container_detail::uninitialized_size, a, n)
{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
this->num_alloc += n != 0;
#endif
boost::container::uninitialized_value_init_alloc_n
(this->m_holder.alloc(), n, this->priv_raw_begin());
}
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts n default initialized values.
//!
//! <b>Throws</b>: If allocator_type's allocation
//! throws or T's default initialization throws.
//!
//! <b>Complexity</b>: Linear to n.
//!
//! <b>Note</b>: Non-standard extension
vector(size_type n, default_init_t)
: m_holder(container_detail::uninitialized_size, n)
{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
this->num_alloc += n != 0;
#endif
boost::container::uninitialized_default_init_alloc_n
(this->m_holder.alloc(), n, this->priv_raw_begin());
}
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts n default initialized values.
//!
//! <b>Throws</b>: If allocator_type's allocation
//! throws or T's default initialization throws.
//!
//! <b>Complexity</b>: Linear to n.
//!
//! <b>Note</b>: Non-standard extension
vector(size_type n, default_init_t, const allocator_type &a)
: m_holder(container_detail::uninitialized_size, a, n)
{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
this->num_alloc += n != 0;
#endif
boost::container::uninitialized_default_init_alloc_n
(this->m_holder.alloc(), n, this->priv_raw_begin());
}
//! <b>Effects</b>: Constructs a vector
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocator_type's allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
vector(size_type n, const T& value)
: m_holder(container_detail::uninitialized_size, n)
{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
this->num_alloc += n != 0;
#endif
boost::container::uninitialized_fill_alloc_n
(this->m_holder.alloc(), value, n, this->priv_raw_begin());
}
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
vector(size_type n, const T& value, const allocator_type& a)
: m_holder(container_detail::uninitialized_size, a, n)
{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
this->num_alloc += n != 0;
#endif
boost::container::uninitialized_fill_alloc_n
(this->m_holder.alloc(), value, n, this->priv_raw_begin());
}
//! <b>Effects</b>: Constructs a vector
//! and inserts a copy of the range [first, last) in the vector.
//!
//! <b>Throws</b>: If allocator_type's allocation
//! throws or T's constructor taking a dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InIt>
vector(InIt first, InIt last
BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename container_detail::disable_if_c
< container_detail::is_convertible<InIt BOOST_MOVE_I size_type>::value
BOOST_MOVE_I container_detail::nat >::type * = 0)
)
: m_holder()
{ this->assign(first, last); }
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts a copy of the range [first, last) in the vector.
//!
//! <b>Throws</b>: If allocator_type's allocation
//! throws or T's constructor taking a dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InIt>
vector(InIt first, InIt last, const allocator_type& a
BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename container_detail::disable_if_c
< container_detail::is_convertible<InIt BOOST_MOVE_I size_type>::value
BOOST_MOVE_I container_detail::nat >::type * = 0)
)
: m_holder(a)
{ this->assign(first, last); }
//! <b>Effects</b>: Copy constructs a vector.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Throws</b>: If allocator_type's allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
vector(const vector &x)
: m_holder( container_detail::uninitialized_size
, allocator_traits_type::select_on_container_copy_construction(x.m_holder.alloc())
, x.size())
{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
this->num_alloc += x.size() != 0;
#endif
::boost::container::uninitialized_copy_alloc_n
( this->m_holder.alloc(), x.priv_raw_begin()
, x.size(), this->priv_raw_begin());
}
//! <b>Effects</b>: Move constructor. Moves x's resources to *this.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
vector(BOOST_RV_REF(vector) x) BOOST_NOEXCEPT_OR_NOTHROW
: m_holder(boost::move(x.m_holder))
{ BOOST_STATIC_ASSERT((!allocator_traits_type::is_partially_propagable::value)); }
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts a copy of the range [il.begin(), il.last()) in the vector
//!
//! <b>Throws</b>: If T's constructor taking a dereferenced initializer_list iterator throws.
//!
//! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).
vector(std::initializer_list<value_type> il, const allocator_type& a = allocator_type())
: m_holder(a)
{
this->assign(il.begin(), il.end());
}
#endif
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Move constructor. Moves x's resources to *this.
//!
//! <b>Throws</b>: If T's move constructor or allocation throws
//!
//! <b>Complexity</b>: Linear.
//!
//! <b>Note</b>: Non-standard extension to support static_vector
template<class OtherAllocator>
vector(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
, typename container_detail::enable_if_c
< container_detail::is_version<OtherAllocator, 0>::value>::type * = 0
)
: m_holder(boost::move(x.m_holder))
{}
#endif //!defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Copy constructs a vector using the specified allocator.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Throws</b>: If allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
vector(const vector &x, const allocator_type &a)
: m_holder(container_detail::uninitialized_size, a, x.size())
{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
this->num_alloc += x.size() != 0;
#endif
::boost::container::uninitialized_copy_alloc_n_source
( this->m_holder.alloc(), x.priv_raw_begin()
, x.size(), this->priv_raw_begin());
}
//! <b>Effects</b>: Move constructor using the specified allocator.
//! Moves x's resources to *this if a == allocator_type().
//! Otherwise copies values from x to *this.
//!
//! <b>Throws</b>: If allocation or T's copy constructor throws.
//!
//! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise.
vector(BOOST_RV_REF(vector) x, const allocator_type &a)
: m_holder( container_detail::uninitialized_size, a
, is_propagable_from(x.get_stored_allocator(), x.m_holder.start(), a, true) ? 0 : x.size()
)
{
if(is_propagable_from(x.get_stored_allocator(), x.m_holder.start(), a, true)){
this->m_holder.steal_resources(x.m_holder);
}
else{
const size_type n = x.size();
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
this->num_alloc += n != 0;
#endif
::boost::container::uninitialized_move_alloc_n_source
( this->m_holder.alloc(), x.priv_raw_begin()
, n, this->priv_raw_begin());
}
}
//! <b>Effects</b>: Destroys the vector. All stored values are destroyed
//! and used memory is deallocated.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements.
~vector() BOOST_NOEXCEPT_OR_NOTHROW
{
boost::container::destroy_alloc_n
(this->get_stored_allocator(), this->priv_raw_begin(), this->m_holder.m_size);
//vector_alloc_holder deallocates the data
}
//! <b>Effects</b>: Makes *this contain the same elements as x.
//!
//! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
//! of each of x's elements.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: Linear to the number of elements in x.
BOOST_CONTAINER_FORCEINLINE vector& operator=(BOOST_COPY_ASSIGN_REF(vector) x)
{
if (&x != this){
this->priv_copy_assign(x);
}
return *this;
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
//! <b>Effects</b>: Make *this container contains elements from il.
//!
//! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).
BOOST_CONTAINER_FORCEINLINE vector& operator=(std::initializer_list<value_type> il)
{
this->assign(il.begin(), il.end());
return *this;
}
#endif
//! <b>Effects</b>: Move assignment. All x's values are transferred to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: If allocator_traits_type::propagate_on_container_move_assignment
//! is false and (allocation throws or value_type's move constructor throws)
//!
//! <b>Complexity</b>: Constant if allocator_traits_type::
//! propagate_on_container_move_assignment is true or
//! this->get>allocator() == x.get_allocator(). Linear otherwise.
BOOST_CONTAINER_FORCEINLINE vector& operator=(BOOST_RV_REF(vector) x)
BOOST_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value
|| allocator_traits_type::is_always_equal::value)
{
BOOST_ASSERT(&x != this);
this->priv_move_assign(boost::move(x));
return *this;
}
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Move assignment. All x's values are transferred to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: If move constructor/assignment of T throws or allocation throws
//!
//! <b>Complexity</b>: Linear.
//!
//! <b>Note</b>: Non-standard extension to support static_vector
template<class OtherAllocator>
BOOST_CONTAINER_FORCEINLINE typename container_detail::enable_if_and
< vector&
, container_detail::is_version<OtherAllocator, 0>
, container_detail::is_different<OtherAllocator, allocator_type>
>::type
operator=(BOOST_RV_REF_BEG vector<value_type, OtherAllocator> BOOST_RV_REF_END x)
{
this->priv_move_assign(boost::move(x));
return *this;
}
//! <b>Effects</b>: Copy assignment. All x's values are copied to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: If move constructor/assignment of T throws or allocation throws
//!
//! <b>Complexity</b>: Linear.
//!
//! <b>Note</b>: Non-standard extension to support static_vector
template<class OtherAllocator>
BOOST_CONTAINER_FORCEINLINE typename container_detail::enable_if_and
< vector&
, container_detail::is_version<OtherAllocator, 0>
, container_detail::is_different<OtherAllocator, allocator_type>
>::type
operator=(const vector<value_type, OtherAllocator> &x)
{
this->priv_copy_assign(x);
return *this;
}
#endif
//! <b>Effects</b>: Assigns the the range [first, last) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment or
//! T's constructor/assignment from dereferencing InpIt throws.
//!
//! <b>Complexity</b>: Linear to n.
template <class InIt>
void assign(InIt first, InIt last
BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename container_detail::disable_if_or
< void
BOOST_MOVE_I container_detail::is_convertible<InIt BOOST_MOVE_I size_type>
BOOST_MOVE_I container_detail::and_
< container_detail::is_different<alloc_version BOOST_MOVE_I version_0>
BOOST_MOVE_I container_detail::is_not_input_iterator<InIt>
>
>::type * = 0)
)
{
//Overwrite all elements we can from [first, last)
iterator cur = this->begin();
const iterator end_it = this->end();
for ( ; first != last && cur != end_it; ++cur, ++first){
*cur = *first;
}
if (first == last){
//There are no more elements in the sequence, erase remaining
T* const end_pos = this->priv_raw_end();
const size_type n = static_cast<size_type>(end_pos - container_detail::iterator_to_raw_pointer(cur));
this->priv_destroy_last_n(n);
}
else{
//There are more elements in the range, insert the remaining ones
this->insert(this->cend(), first, last);
}
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
//! <b>Effects</b>: Assigns the the range [il.begin(), il.end()) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's constructor from dereferencing iniializer_list iterator throws.
//!
BOOST_CONTAINER_FORCEINLINE void assign(std::initializer_list<T> il)
{
this->assign(il.begin(), il.end());
}
#endif
//! <b>Effects</b>: Assigns the the range [first, last) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment or
//! T's constructor/assignment from dereferencing InpIt throws.
//!
//! <b>Complexity</b>: Linear to n.
template <class FwdIt>
void assign(FwdIt first, FwdIt last
BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename container_detail::disable_if_or
< void
BOOST_MOVE_I container_detail::is_same<alloc_version BOOST_MOVE_I version_0>
BOOST_MOVE_I container_detail::is_convertible<FwdIt BOOST_MOVE_I size_type>
BOOST_MOVE_I container_detail::is_input_iterator<FwdIt>
>::type * = 0)
)
{
//For Fwd iterators the standard only requires EmplaceConstructible and assignable from *first
//so we can't do any backwards allocation
const size_type input_sz = static_cast<size_type>(boost::container::iterator_distance(first, last));
const size_type old_capacity = this->capacity();
if(input_sz > old_capacity){ //If input range is too big, we need to reallocate
size_type real_cap = 0;
pointer reuse(this->m_holder.start());
pointer const ret(this->m_holder.allocation_command(allocate_new|expand_fwd, input_sz, real_cap = input_sz, reuse));
if(!reuse){ //New allocation, just emplace new values
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
pointer const old_p = this->m_holder.start();
if(old_p){
this->priv_destroy_all();
this->m_holder.alloc().deallocate(old_p, old_capacity);
}
this->m_holder.start(ret);
this->m_holder.capacity(real_cap);
this->m_holder.m_size = 0;
this->priv_uninitialized_construct_at_end(first, last);
return;
}
else{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_fwd;
#endif
this->m_holder.capacity(real_cap);
//Forward expansion, use assignment + back deletion/construction that comes later
}
}
//Overwrite all elements we can from [first, last)
iterator cur = this->begin();
const iterator end_it = this->end();
for ( ; first != last && cur != end_it; ++cur, ++first){
*cur = *first;
}
if (first == last){
//There are no more elements in the sequence, erase remaining
this->priv_destroy_last_n(this->size() - input_sz);
}
else{
//Uninitialized construct at end the remaining range
this->priv_uninitialized_construct_at_end(first, last);
}
}
//! <b>Effects</b>: Assigns the n copies of val to *this.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: Linear to n.
BOOST_CONTAINER_FORCEINLINE void assign(size_type n, const value_type& val)
{ this->assign(cvalue_iterator(val, n), cvalue_iterator()); }
//! <b>Effects</b>: Returns a copy of the internal allocator.
//!
//! <b>Throws</b>: If allocator's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->m_holder.alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
BOOST_CONTAINER_FORCEINLINE stored_allocator_type &get_stored_allocator() BOOST_NOEXCEPT_OR_NOTHROW
{ return this->m_holder.alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
BOOST_CONTAINER_FORCEINLINE const stored_allocator_type &get_stored_allocator() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->m_holder.alloc(); }
//////////////////////////////////////////////
//
// iterators
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns an iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE iterator begin() BOOST_NOEXCEPT_OR_NOTHROW
{ return iterator(this->m_holder.start()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE const_iterator begin() const BOOST_NOEXCEPT_OR_NOTHROW
{ return const_iterator(this->m_holder.start()); }
//! <b>Effects</b>: Returns an iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE iterator end() BOOST_NOEXCEPT_OR_NOTHROW
{ return iterator(this->m_holder.start() + this->m_holder.m_size); }
//! <b>Effects</b>: Returns a const_iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE const_iterator end() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE reverse_iterator rbegin() BOOST_NOEXCEPT_OR_NOTHROW
{ return reverse_iterator(this->end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rbegin() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE reverse_iterator rend() BOOST_NOEXCEPT_OR_NOTHROW
{ return reverse_iterator(this->begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rend() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->crend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE const_iterator cbegin() const BOOST_NOEXCEPT_OR_NOTHROW
{ return const_iterator(this->m_holder.start()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE const_iterator cend() const BOOST_NOEXCEPT_OR_NOTHROW
{ return const_iterator(this->m_holder.start() + this->m_holder.m_size); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crbegin() const BOOST_NOEXCEPT_OR_NOTHROW
{ return const_reverse_iterator(this->end());}
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crend() const BOOST_NOEXCEPT_OR_NOTHROW
{ return const_reverse_iterator(this->begin()); }
//////////////////////////////////////////////
//
// capacity
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns true if the vector contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE bool empty() const BOOST_NOEXCEPT_OR_NOTHROW
{ return !this->m_holder.m_size; }
//! <b>Effects</b>: Returns the number of the elements contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE size_type size() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->m_holder.m_size; }
//! <b>Effects</b>: Returns the largest possible size of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE size_type max_size() const BOOST_NOEXCEPT_OR_NOTHROW
{ return allocator_traits_type::max_size(this->m_holder.alloc()); }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are value initialized.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy/move or value initialization throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size)
{ this->priv_resize(new_size, value_init); }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are default initialized.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy/move or default initialization throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
//!
//! <b>Note</b>: Non-standard extension
void resize(size_type new_size, default_init_t)
{ this->priv_resize(new_size, default_init); }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are copy constructed from x.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size, const T& x)
{ this->priv_resize(new_size, x); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_FORCEINLINE size_type capacity() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->m_holder.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy/move constructor throws.
BOOST_CONTAINER_FORCEINLINE void reserve(size_type new_cap)
{
if (this->capacity() < new_cap){
this->priv_reserve_no_capacity(new_cap, alloc_version());
}
}
//! <b>Effects</b>: Tries to deallocate the excess of memory created
//! with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
BOOST_CONTAINER_FORCEINLINE void shrink_to_fit()
{ this->priv_shrink_to_fit(alloc_version()); }
//////////////////////////////////////////////
//
// element access
//
//////////////////////////////////////////////
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the first
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front() BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(!this->empty());
return *this->m_holder.start();
}
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the first
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(!this->empty());
return *this->m_holder.start();
}
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference back() BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(!this->empty());
return this->m_holder.start()[this->m_holder.m_size - 1];
}
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference back() const BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(!this->empty());
return this->m_holder.start()[this->m_holder.m_size - 1];
}
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference operator[](size_type n) BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(this->m_holder.m_size > n);
return this->m_holder.start()[n];
}
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference operator[](size_type n) const BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(this->m_holder.m_size > n);
return this->m_holder.start()[n];
}
//! <b>Requires</b>: size() >= n.
//!
//! <b>Effects</b>: Returns an iterator to the nth element
//! from the beginning of the container. Returns end()
//! if n == size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension
iterator nth(size_type n) BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(this->m_holder.m_size >= n);
return iterator(this->m_holder.start()+n);
}
//! <b>Requires</b>: size() >= n.
//!
//! <b>Effects</b>: Returns a const_iterator to the nth element
//! from the beginning of the container. Returns end()
//! if n == size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension
const_iterator nth(size_type n) const BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(this->m_holder.m_size >= n);
return const_iterator(this->m_holder.start()+n);
}
//! <b>Requires</b>: begin() <= p <= end().
//!
//! <b>Effects</b>: Returns the index of the element pointed by p
//! and size() if p == end().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension
size_type index_of(iterator p) BOOST_NOEXCEPT_OR_NOTHROW
{
//Range check assert done in priv_index_of
return this->priv_index_of(vector_iterator_get_ptr(p));
}
//! <b>Requires</b>: begin() <= p <= end().
//!
//! <b>Effects</b>: Returns the index of the element pointed by p
//! and size() if p == end().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension
size_type index_of(const_iterator p) const BOOST_NOEXCEPT_OR_NOTHROW
{
//Range check assert done in priv_index_of
return this->priv_index_of(vector_iterator_get_ptr(p));
}
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
reference at(size_type n)
{
this->priv_throw_if_out_of_range(n);
return this->m_holder.start()[n];
}
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
const_reference at(size_type n) const
{
this->priv_throw_if_out_of_range(n);
return this->m_holder.start()[n];
}
//////////////////////////////////////////////
//
// data access
//
//////////////////////////////////////////////
//! <b>Returns</b>: A pointer such that [data(),data() + size()) is a valid range.
//! For a non-empty vector, data() == &front().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
T* data() BOOST_NOEXCEPT_OR_NOTHROW
{ return this->priv_raw_begin(); }
//! <b>Returns</b>: A pointer such that [data(),data() + size()) is a valid range.
//! For a non-empty vector, data() == &front().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const T * data() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->priv_raw_begin(); }
//////////////////////////////////////////////
//
// modifiers
//
//////////////////////////////////////////////
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the end of the vector.
//!
//! <b>Returns</b>: A reference to the created object.
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or
//! T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
template<class ...Args>
BOOST_CONTAINER_FORCEINLINE reference emplace_back(BOOST_FWD_REF(Args)...args)
{
if (BOOST_LIKELY(this->room_enough())){
//There is more memory, just construct a new object at the end
allocator_traits_type::construct(this->m_holder.alloc(), this->priv_raw_end(), ::boost::forward<Args>(args)...);
++this->m_holder.m_size;
return *this->priv_raw_end();
}
else{
typedef container_detail::insert_emplace_proxy<Allocator, T*, Args...> type;
return *this->priv_forward_range_insert_no_capacity
(this->back_ptr(), 1, type(::boost::forward<Args>(args)...), alloc_version());
}
}
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the end of the vector.
//!
//! <b>Throws</b>: If the in-place constructor throws.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Non-standard extension.
template<class ...Args>
BOOST_CONTAINER_FORCEINLINE bool stable_emplace_back(BOOST_FWD_REF(Args)...args)
{
const bool is_room_enough = this->room_enough() || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(1u));
if (BOOST_LIKELY(is_room_enough)){
//There is more memory, just construct a new object at the end
allocator_traits_type::construct(this->m_holder.alloc(), this->priv_raw_end(), ::boost::forward<Args>(args)...);
++this->m_holder.m_size;
}
return is_room_enough;
}
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... before position
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or
//! T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
template<class ...Args>
iterator emplace(const_iterator position, BOOST_FWD_REF(Args) ...args)
{
BOOST_ASSERT(this->priv_in_range_or_end(position));
//Just call more general insert(pos, size, value) and return iterator
typedef container_detail::insert_emplace_proxy<Allocator, T*, Args...> type;
return this->priv_forward_range_insert( vector_iterator_get_ptr(position), 1
, type(::boost::forward<Args>(args)...));
}
#else // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#define BOOST_CONTAINER_VECTOR_EMPLACE_CODE(N) \
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
BOOST_CONTAINER_FORCEINLINE reference emplace_back(BOOST_MOVE_UREF##N)\
{\
if (BOOST_LIKELY(this->room_enough())){\
allocator_traits_type::construct (this->m_holder.alloc()\
, this->priv_raw_end() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
++this->m_holder.m_size;\
return *this->priv_raw_end();\
}\
else{\
typedef container_detail::insert_emplace_proxy_arg##N<Allocator, T* BOOST_MOVE_I##N BOOST_MOVE_TARG##N> type;\
return *this->priv_forward_range_insert_no_capacity\
( this->back_ptr(), 1, type(BOOST_MOVE_FWD##N), alloc_version());\
}\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
BOOST_CONTAINER_FORCEINLINE bool stable_emplace_back(BOOST_MOVE_UREF##N)\
{\
const bool is_room_enough = this->room_enough() || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(1u));\
if (BOOST_LIKELY(is_room_enough)){\
allocator_traits_type::construct (this->m_holder.alloc()\
, this->priv_raw_end() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
++this->m_holder.m_size;\
}\
return is_room_enough;\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
iterator emplace(const_iterator pos BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
BOOST_ASSERT(this->priv_in_range_or_end(pos));\
typedef container_detail::insert_emplace_proxy_arg##N<Allocator, T* BOOST_MOVE_I##N BOOST_MOVE_TARG##N> type;\
return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), 1, type(BOOST_MOVE_FWD##N));\
}\
//
BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_VECTOR_EMPLACE_CODE)
#undef BOOST_CONTAINER_VECTOR_EMPLACE_CODE
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x at the end of the vector.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(const T &x);
//! <b>Effects</b>: Constructs a new element in the end of the vector
//! and moves the resources of x to this new element.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of x before position.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator position, const T &x);
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a new element before position with x's resources.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator position, T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator)
#endif
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert n copies of x before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or p if n is 0.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
iterator insert(const_iterator p, size_type n, const T& x)
{
BOOST_ASSERT(this->priv_in_range_or_end(p));
container_detail::insert_n_copies_proxy<Allocator, T*> proxy(x);
return this->priv_forward_range_insert(vector_iterator_get_ptr(p), n, proxy);
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InpIt throws or T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: Linear to boost::container::iterator_distance [first, last).
template <class InIt>
iterator insert(const_iterator pos, InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::disable_if_or
< void
, container_detail::is_convertible<InIt, size_type>
, container_detail::is_not_input_iterator<InIt>
>::type * = 0
#endif
)
{
BOOST_ASSERT(this->priv_in_range_or_end(pos));
const size_type n_pos = pos - this->cbegin();
iterator it(vector_iterator_get_ptr(pos));
for(;first != last; ++first){
it = this->emplace(it, *first);
++it;
}
return iterator(this->m_holder.start() + n_pos);
}
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class FwdIt>
iterator insert(const_iterator pos, FwdIt first, FwdIt last
, typename container_detail::disable_if_or
< void
, container_detail::is_convertible<FwdIt, size_type>
, container_detail::is_input_iterator<FwdIt>
>::type * = 0
)
{
BOOST_ASSERT(this->priv_in_range_or_end(pos));
container_detail::insert_range_proxy<Allocator, FwdIt, T*> proxy(first);
return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), boost::container::iterator_distance(first, last), proxy);
}
#endif
//! <b>Requires</b>: p must be a valid iterator of *this. num, must
//! be equal to boost::container::iterator_distance(first, last)
//!
//! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InpIt throws or T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: Linear to boost::container::iterator_distance [first, last).
//!
//! <b>Note</b>: This function avoids a linear operation to calculate boost::container::iterator_distance[first, last)
//! for forward and bidirectional iterators, and a one by one insertion for input iterators. This is a
//! a non-standard extension.
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class InIt>
iterator insert(const_iterator pos, size_type num, InIt first, InIt last)
{
BOOST_ASSERT(this->priv_in_range_or_end(pos));
BOOST_ASSERT(container_detail::is_input_iterator<InIt>::value ||
num == static_cast<size_type>(boost::container::iterator_distance(first, last)));
(void)last;
container_detail::insert_range_proxy<Allocator, InIt, T*> proxy(first);
return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), num, proxy);
}
#endif
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of the [il.begin(), il.end()) range before position.
//!
//! <b>Returns</b>: an iterator to the first inserted element or position if first == last.
//!
//! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).
iterator insert(const_iterator position, std::initializer_list<value_type> il)
{
//Assertion done in insert()
return this->insert(position, il.begin(), il.end());
}
#endif
//! <b>Effects</b>: Removes the last element from the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
void pop_back() BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(!this->empty());
//Destroy last element
this->priv_destroy_last();
}
//! <b>Effects</b>: Erases the element at position pos.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements between pos and the
//! last element. Constant if pos is the last element.
iterator erase(const_iterator position)
{
BOOST_ASSERT(this->priv_in_range(position));
const pointer p = vector_iterator_get_ptr(position);
T *const pos_ptr = container_detail::to_raw_pointer(p);
T *const beg_ptr = this->priv_raw_begin();
T *const new_end_ptr = ::boost::container::move(pos_ptr + 1, beg_ptr + this->m_holder.m_size, pos_ptr);
//Move elements forward and destroy last
this->priv_destroy_last(pos_ptr == new_end_ptr);
return iterator(p);
}
//! <b>Effects</b>: Erases the elements pointed by [first, last).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the distance between first and last
//! plus linear to the elements between pos and the last element.
iterator erase(const_iterator first, const_iterator last)
{
BOOST_ASSERT(first == last ||
(first < last && this->priv_in_range(first) && this->priv_in_range_or_end(last)));
if (first != last){
T* const old_end_ptr = this->priv_raw_end();
T* const first_ptr = container_detail::to_raw_pointer(vector_iterator_get_ptr(first));
T* const last_ptr = container_detail::to_raw_pointer(vector_iterator_get_ptr(last));
T* const ptr = container_detail::to_raw_pointer(boost::container::move(last_ptr, old_end_ptr, first_ptr));
this->priv_destroy_last_n(old_end_ptr - ptr);
}
return iterator(vector_iterator_get_ptr(first));
}
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(vector& x)
BOOST_NOEXCEPT_IF( ((allocator_traits_type::propagate_on_container_swap::value
|| allocator_traits_type::is_always_equal::value) &&
!container_detail::is_version<Allocator, 0>::value))
{
this->priv_swap(x, container_detail::bool_<container_detail::is_version<Allocator, 0>::value>());
}
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear
//!
//! <b>Note</b>: Non-standard extension to support static_vector
template<class OtherAllocator>
void swap(vector<T, OtherAllocator> & x
, typename container_detail::enable_if_and
< void
, container_detail::is_version<OtherAllocator, 0>
, container_detail::is_different<OtherAllocator, allocator_type>
>::type * = 0
)
{ this->m_holder.deep_swap(x.m_holder); }
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//! <b>Effects</b>: Erases all the elements of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
void clear() BOOST_NOEXCEPT_OR_NOTHROW
{ this->priv_destroy_all(); }
//! <b>Effects</b>: Returns true if x and y are equal
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator==(const vector& x, const vector& y)
{ return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin()); }
//! <b>Effects</b>: Returns true if x and y are unequal
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator!=(const vector& x, const vector& y)
{ return !(x == y); }
//! <b>Effects</b>: Returns true if x is less than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator<(const vector& x, const vector& y)
{
const_iterator first1(x.cbegin()), first2(y.cbegin());
const const_iterator last1(x.cend()), last2(y.cend());
for ( ; (first1 != last1) && (first2 != last2); ++first1, ++first2 ) {
if (*first1 < *first2) return true;
if (*first2 < *first1) return false;
}
return (first1 == last1) && (first2 != last2);
}
//! <b>Effects</b>: Returns true if x is greater than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator>(const vector& x, const vector& y)
{ return y < x; }
//! <b>Effects</b>: Returns true if x is equal or less than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator<=(const vector& x, const vector& y)
{ return !(y < x); }
//! <b>Effects</b>: Returns true if x is equal or greater than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator>=(const vector& x, const vector& y)
{ return !(x < y); }
//! <b>Effects</b>: x.swap(y)
//!
//! <b>Complexity</b>: Constant.
friend void swap(vector& x, vector& y)
{ x.swap(y); }
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory
//! (memory expansion) that will not invalidate iterators.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy/move constructor throws.
//!
//! <b>Note</b>: Non-standard extension.
bool stable_reserve(size_type new_cap)
{
const size_type cp = this->capacity();
return cp >= new_cap || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(new_cap - cp));
}
//Absolutely experimental. This function might change, disappear or simply crash!
template<class BiDirPosConstIt, class BiDirValueIt>
void insert_ordered_at(const size_type element_count, BiDirPosConstIt last_position_it, BiDirValueIt last_value_it)
{
typedef container_detail::vector_insert_ordered_cursor<BiDirPosConstIt, BiDirValueIt> inserter_t;
return this->priv_insert_ordered_at(element_count, inserter_t(last_position_it, last_value_it));
}
template<class BidirIt>
void merge(BidirIt first, BidirIt last)
{ this->merge(first, last, value_less()); }
template<class BidirIt, class Compare>
void merge(BidirIt first, BidirIt last, Compare comp)
{ this->priv_merge(container_detail::false_type(), first, last, comp); }
template<class BidirIt>
void merge_unique(BidirIt first, BidirIt last)
{ this->priv_merge(container_detail::true_type(), first, last, value_less()); }
template<class BidirIt, class Compare>
void merge_unique(BidirIt first, BidirIt last, Compare comp)
{ this->priv_merge(container_detail::true_type(), first, last, comp); }
private:
template<class PositionValue>
void priv_insert_ordered_at(const size_type element_count, PositionValue position_value)
{
const size_type old_size_pos = this->size();
this->reserve(old_size_pos + element_count);
T* const begin_ptr = this->priv_raw_begin();
size_type insertions_left = element_count;
size_type prev_pos = old_size_pos;
size_type old_hole_size = element_count;
//Exception rollback. If any copy throws before the hole is filled, values
//already inserted/copied at the end of the buffer will be destroyed.
typename value_traits::ArrayDestructor past_hole_values_destroyer
(begin_ptr + old_size_pos + element_count, this->m_holder.alloc(), size_type(0u));
//Loop for each insertion backwards, first moving the elements after the insertion point,
//then inserting the element.
while(insertions_left){
--position_value;
size_type const pos = position_value.get_pos();
BOOST_ASSERT(pos != size_type(-1) && pos <= old_size_pos && pos <= prev_pos);
//If needed shift the range after the insertion point and the previous insertion point.
//Function will take care if the shift crosses the size() boundary, using copy/move
//or uninitialized copy/move if necessary.
size_type new_hole_size = (pos != prev_pos)
? priv_insert_ordered_at_shift_range(pos, prev_pos, this->size(), insertions_left)
: old_hole_size
;
if(new_hole_size){
//The hole was reduced by priv_insert_ordered_at_shift_range so expand exception rollback range backwards
past_hole_values_destroyer.increment_size_backwards(prev_pos - pos);
//Insert the new value in the hole
allocator_traits_type::construct(this->m_holder.alloc(), begin_ptr + pos + insertions_left - 1, position_value.get_val());
if(--new_hole_size){
//The hole was reduced by the new insertion by one
past_hole_values_destroyer.increment_size_backwards(size_type(1u));
}
else{
//Hole was just filled, disable exception rollback and change vector size
past_hole_values_destroyer.release();
this->m_holder.m_size += element_count;
}
}
else{
if(old_hole_size){
//Hole was just filled by priv_insert_ordered_at_shift_range, disable exception rollback and change vector size
past_hole_values_destroyer.release();
this->m_holder.m_size += element_count;
}
//Insert the new value in the already constructed range
begin_ptr[pos + insertions_left - 1] = position_value.get_val();
}
--insertions_left;
old_hole_size = new_hole_size;
prev_pos = pos;
}
}
template<class UniqueBool, class BidirIt, class Compare>
void priv_merge(UniqueBool, BidirIt first, BidirIt last, Compare comp)
{
size_type const n = static_cast<size_type>(boost::container::iterator_distance(first, last));
size_type const s = this->size();
if(BOOST_LIKELY(s)){
size_type const c = this->capacity();
size_type const free_c = (c - s);
//Use a new buffer if current one is too small for new elements,
//or there is no room for position indexes
if(free_c < n){
size_type const new_size = s + n;
size_type new_cap = new_size;
pointer p = pointer();
p = this->m_holder.allocation_command(allocate_new, new_size, new_cap, p);
this->priv_merge_in_new_buffer(UniqueBool(), first, n, comp, p, new_cap);
}
else if(!UniqueBool::value && free_c >= n){
typedef container_detail::vector_merge_cursor<T, size_type, BidirIt, Compare> inserter_t;
T* const pbeg = this->priv_raw_begin();
return this->priv_insert_ordered_at(n, inserter_t(pbeg, pbeg + s, last, comp));
}
else{ //UniqueBool::value == true and free_c >= n
std::size_t remaining = n;
static const std::size_t PosCount = 64u;
size_type positions[PosCount];
size_type *indexes = 0;
while(remaining){
//Query for room to store indexes in the remaining buffer
boost::uintptr_t const szt_align_mask = container_detail::alignment_of<size_type>::value - 1;
boost::uintptr_t const addr = boost::uintptr_t(this->priv_raw_begin() + s + n);
boost::uintptr_t const capaddr = boost::uintptr_t(this->priv_raw_begin() + c);
boost::uintptr_t const aligned_addr = (addr + szt_align_mask) & ~szt_align_mask;
indexes = reinterpret_cast<size_type *>(aligned_addr);
std::size_t index_capacity = (aligned_addr >= capaddr) ? 0u : (capaddr - addr)/sizeof(size_type);
//Capacity is constant, we're not going to change it
if(index_capacity < PosCount){
indexes = positions;
index_capacity = PosCount;
}
if(index_capacity > remaining)
index_capacity = remaining;
BidirIt limit = first;
boost::container::iterator_advance(limit, index_capacity);
this->priv_insert_ordered_range(UniqueBool(), index_capacity, first, limit, indexes, comp);
first = limit;
remaining -= index_capacity;
}
}
}
else{
this->insert(this->cend(), n, first, last);
}
}
template <class UniqueBool, class BidirIt, class Compare>
void priv_insert_ordered_range
(UniqueBool, size_type const n, BidirIt first, BidirIt const last, size_type positions[], Compare comp)
{
//Linear: at most N + M -1 comparisons
//Log: MlogN
//Average
//Linear: N + M - 2
//Log: MlogN
//N+M - 2
//N
//(N+M)/2 < MlogN
//(N/M+1)/2 <= logN
//bool const linear = !s || !n || (s <= n) || ((s+n)/n/2 < logN);
size_type const s = this->size();
size_type remaining = n;
T* const pbeg = this->priv_raw_begin();
T* const pend = pbeg + s;
T* pcur = pbeg;
size_type *position = positions;
size_type added_in_middle = 0;
if(first != last && pcur != pend){
while(1){
//maintain stability moving external values only if they are strictly less
if(comp(*first, *pcur)) {
*position = static_cast<size_type>(pcur - pbeg);
BOOST_ASSERT((position == positions) || (*(position-1) == size_type(-1)) || (*(position-1) <= *position));
++position;
++added_in_middle;
--remaining;
if(++first == last) break;
}
else if(UniqueBool::value && !comp(*pcur, *first)){
*position = size_type(-1);
++position;
--remaining;
if(++first == last) break;
}
else{
if(++pcur == pend) break;
}
}
}
this->insert_ordered_at(added_in_middle, position, first);
this->insert(this->cend(), remaining, first, last);
}
template<class UniqueBool, class FwdIt, class Compare>
void priv_merge_in_new_buffer
(UniqueBool, FwdIt first, size_type n, Compare comp, pointer new_storage, size_type const new_cap)
{
BOOST_ASSERT((new_cap >= this->size() ) && (new_cap - this->size()) >= n);
allocator_type &a = this->m_holder.alloc();
typename value_traits::ArrayDeallocator new_buffer_deallocator(new_storage, a, new_cap);
typename value_traits::ArrayDestructor new_values_destroyer(new_storage, a, 0u);
T* pbeg = this->priv_raw_begin();
size_type const old_size = this->size();
T* const pend = pbeg + old_size;
T* d_first = container_detail::to_raw_pointer(new_storage);
size_type added = n;
//Merge in new buffer loop
while(1){
if(!n) {
::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), pbeg, pend, d_first);
break;
}
else if(pbeg == pend) {
::boost::container::uninitialized_move_alloc_n(this->m_holder.alloc(), first, n, d_first);
break;
}
//maintain stability moving external values only if they are strictly less
else if(comp(*first, *pbeg)) {
allocator_traits_type::construct( this->m_holder.alloc(), d_first, ::boost::move(*first) );
new_values_destroyer.increment_size(1u);
++first;
--n;
++d_first;
}
else if(UniqueBool::value && !comp(*pbeg, *first)){
++first;
--n;
--added;
}
else{
allocator_traits_type::construct( this->m_holder.alloc(), d_first, ::boost::move(*pbeg) );
new_values_destroyer.increment_size(1u);
++pbeg;
++d_first;
}
}
//Nothrow operations
pointer const old_p = this->m_holder.start();
size_type const old_cap = this->m_holder.capacity();
boost::container::destroy_alloc_n(a, container_detail::to_raw_pointer(old_p), old_size);
a.deallocate(old_p, old_cap);
this->m_holder.m_size = old_size + added;
this->m_holder.start(new_storage);
this->m_holder.capacity(new_cap);
new_buffer_deallocator.release();
new_values_destroyer.release();
}
bool room_enough() const
{ return this->m_holder.m_size < this->m_holder.capacity(); }
pointer back_ptr() const
{ return this->m_holder.start() + this->m_holder.m_size; }
size_type priv_index_of(pointer p) const
{
BOOST_ASSERT(this->m_holder.start() <= p);
BOOST_ASSERT(p <= (this->m_holder.start()+this->size()));
return static_cast<size_type>(p - this->m_holder.start());
}
template<class OtherAllocator>
void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
, typename container_detail::enable_if_c
< container_detail::is_version<OtherAllocator, 0>::value >::type * = 0)
{
if(!container_detail::is_same<OtherAllocator, allocator_type>::value &&
this->capacity() < x.size()){
throw_bad_alloc();
}
T* const this_start = this->priv_raw_begin();
T* const other_start = x.priv_raw_begin();
const size_type this_sz = m_holder.m_size;
const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);
boost::container::move_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);
this->m_holder.m_size = other_sz;
}
template<class OtherAllocator>
void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
, typename container_detail::disable_if_or
< void
, container_detail::is_version<OtherAllocator, 0>
, container_detail::is_different<OtherAllocator, allocator_type>
>::type * = 0)
{
//for move assignment, no aliasing (&x != this) is assummed.
BOOST_ASSERT(this != &x);
allocator_type &this_alloc = this->m_holder.alloc();
allocator_type &x_alloc = x.m_holder.alloc();
const bool propagate_alloc = allocator_traits_type::propagate_on_container_move_assignment::value;
const bool is_propagable_from_x = is_propagable_from(x_alloc, x.m_holder.start(), this_alloc, propagate_alloc);
const bool is_propagable_from_t = is_propagable_from(this_alloc, m_holder.start(), x_alloc, propagate_alloc);
const bool are_both_propagable = is_propagable_from_x && is_propagable_from_t;
//Resources can be transferred if both allocators are
//going to be equal after this function (either propagated or already equal)
if(are_both_propagable){
//Destroy objects but retain memory in case x reuses it in the future
this->clear();
this->m_holder.swap_resources(x.m_holder);
}
else if(is_propagable_from_x){
this->clear();
this->m_holder.alloc().deallocate(this->m_holder.m_start, this->m_holder.m_capacity);
this->m_holder.steal_resources(x.m_holder);
}
//Else do a one by one move
else{
this->assign( boost::make_move_iterator(container_detail::iterator_to_raw_pointer(x.begin()))
, boost::make_move_iterator(container_detail::iterator_to_raw_pointer(x.end() ))
);
}
//Move allocator if needed
container_detail::move_alloc(this_alloc, x_alloc, container_detail::bool_<propagate_alloc>());
}
template<class OtherAllocator>
void priv_copy_assign(const vector<T, OtherAllocator> &x
, typename container_detail::enable_if_c
< container_detail::is_version<OtherAllocator, 0>::value >::type * = 0)
{
if(!container_detail::is_same<OtherAllocator, allocator_type>::value &&
this->capacity() < x.size()){
throw_bad_alloc();
}
T* const this_start = this->priv_raw_begin();
T* const other_start = x.priv_raw_begin();
const size_type this_sz = m_holder.m_size;
const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);
boost::container::copy_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);
this->m_holder.m_size = other_sz;
}
template<class OtherAllocator>
typename container_detail::disable_if_or
< void
, container_detail::is_version<OtherAllocator, 0>
, container_detail::is_different<OtherAllocator, allocator_type>
>::type
priv_copy_assign(const vector<T, OtherAllocator> &x)
{
allocator_type &this_alloc = this->m_holder.alloc();
const allocator_type &x_alloc = x.m_holder.alloc();
container_detail::bool_<allocator_traits_type::
propagate_on_container_copy_assignment::value> flag;
if(flag && this_alloc != x_alloc){
this->clear();
this->shrink_to_fit();
}
container_detail::assign_alloc(this_alloc, x_alloc, flag);
this->assign( x.priv_raw_begin(), x.priv_raw_end() );
}
template<class Vector> //Template it to avoid it in explicit instantiations
void priv_swap(Vector &x, container_detail::true_type) //version_0
{ this->m_holder.deep_swap(x.m_holder); }
template<class Vector> //Template it to avoid it in explicit instantiations
void priv_swap(Vector &x, container_detail::false_type) //version_N
{
const bool propagate_alloc = allocator_traits_type::propagate_on_container_swap::value;
if(are_swap_propagable( this->get_stored_allocator(), this->m_holder.start()
, x.get_stored_allocator(), x.m_holder.start(), propagate_alloc)){
//Just swap internals
this->m_holder.swap_resources(x.m_holder);
}
else{
//Else swap element by element...
bool const t_smaller = this->size() < x.size();
vector &sml = t_smaller ? *this : x;
vector &big = t_smaller ? x : *this;
size_type const common_elements = sml.size();
for(size_type i = 0; i != common_elements; ++i){
boost::adl_move_swap(sml[i], big[i]);
}
//... and move-insert the remaining range
sml.insert( sml.cend()
, boost::make_move_iterator(container_detail::iterator_to_raw_pointer(big.nth(common_elements)))
, boost::make_move_iterator(container_detail::iterator_to_raw_pointer(big.end()))
);
//Destroy remaining elements
big.erase(big.nth(common_elements), big.cend());
}
//And now swap the allocator
container_detail::swap_alloc(this->m_holder.alloc(), x.m_holder.alloc(), container_detail::bool_<propagate_alloc>());
}
void priv_reserve_no_capacity(size_type, version_0)
{ throw_bad_alloc(); }
container_detail::insert_range_proxy<Allocator, boost::move_iterator<T*>, T*> priv_dummy_empty_proxy()
{
return container_detail::insert_range_proxy<Allocator, boost::move_iterator<T*>, T*>
(::boost::make_move_iterator((T *)0));
}
void priv_reserve_no_capacity(size_type new_cap, version_1)
{
//There is not enough memory, allocate a new buffer
//Pass the hint so that allocators can take advantage of this.
pointer const p = allocator_traits_type::allocate(this->m_holder.alloc(), new_cap, this->m_holder.m_start);
//We will reuse insert code, so create a dummy input iterator
this->priv_forward_range_insert_new_allocation
( container_detail::to_raw_pointer(p), new_cap, this->priv_raw_end(), 0, this->priv_dummy_empty_proxy());
}
void priv_reserve_no_capacity(size_type new_cap, version_2)
{
//There is not enough memory, allocate a new
//buffer or expand the old one.
bool same_buffer_start;
size_type real_cap = 0;
pointer reuse(this->m_holder.start());
pointer const ret(this->m_holder.allocation_command(allocate_new | expand_fwd | expand_bwd, new_cap, real_cap = new_cap, reuse));
//Check for forward expansion
same_buffer_start = reuse && this->m_holder.start() == ret;
if(same_buffer_start){
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_fwd;
#endif
this->m_holder.capacity(real_cap);
}
else{ //If there is no forward expansion, move objects, we will reuse insertion code
T * const new_mem = container_detail::to_raw_pointer(ret);
T * const ins_pos = this->priv_raw_end();
if(reuse){ //Backwards (and possibly forward) expansion
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_bwd;
#endif
this->priv_forward_range_insert_expand_backwards
( new_mem , real_cap, ins_pos, 0, this->priv_dummy_empty_proxy());
}
else{ //New buffer
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_forward_range_insert_new_allocation
( new_mem, real_cap, ins_pos, 0, this->priv_dummy_empty_proxy());
}
}
}
void priv_destroy_last(const bool moved = false) BOOST_NOEXCEPT_OR_NOTHROW
{
(void)moved;
if(!(value_traits::trivial_dctr || (value_traits::trivial_dctr_after_move && moved))){
value_type* const p = this->priv_raw_end() - 1;
allocator_traits_type::destroy(this->get_stored_allocator(), p);
}
--this->m_holder.m_size;
}
void priv_destroy_last_n(const size_type n) BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(n <= this->m_holder.m_size);
if(!value_traits::trivial_dctr){
T* const destroy_pos = this->priv_raw_begin() + (this->m_holder.m_size-n);
boost::container::destroy_alloc_n(this->get_stored_allocator(), destroy_pos, n);
}
this->m_holder.m_size -= n;
}
template<class InpIt>
void priv_uninitialized_construct_at_end(InpIt first, InpIt last)
{
T* const old_end_pos = this->priv_raw_end();
T* const new_end_pos = boost::container::uninitialized_copy_alloc(this->m_holder.alloc(), first, last, old_end_pos);
this->m_holder.m_size += new_end_pos - old_end_pos;
}
void priv_destroy_all() BOOST_NOEXCEPT_OR_NOTHROW
{
boost::container::destroy_alloc_n
(this->get_stored_allocator(), this->priv_raw_begin(), this->m_holder.m_size);
this->m_holder.m_size = 0;
}
template<class U>
iterator priv_insert(const const_iterator &p, BOOST_FWD_REF(U) x)
{
BOOST_ASSERT(this->priv_in_range_or_end(p));
return this->priv_forward_range_insert
( vector_iterator_get_ptr(p), 1, container_detail::get_insert_value_proxy<T*, Allocator>(::boost::forward<U>(x)));
}
container_detail::insert_copy_proxy<Allocator, T*> priv_single_insert_proxy(const T &x)
{ return container_detail::insert_copy_proxy<Allocator, T*> (x); }
container_detail::insert_move_proxy<Allocator, T*> priv_single_insert_proxy(BOOST_RV_REF(T) x)
{ return container_detail::insert_move_proxy<Allocator, T*> (x); }
template <class U>
void priv_push_back(BOOST_FWD_REF(U) u)
{
if (BOOST_LIKELY(this->room_enough())){
//There is more memory, just construct a new object at the end
allocator_traits_type::construct
( this->m_holder.alloc(), this->priv_raw_end(), ::boost::forward<U>(u) );
++this->m_holder.m_size;
}
else{
this->priv_forward_range_insert_no_capacity
( this->back_ptr(), 1
, this->priv_single_insert_proxy(::boost::forward<U>(u)), alloc_version());
}
}
container_detail::insert_n_copies_proxy<Allocator, T*> priv_resize_proxy(const T &x)
{ return container_detail::insert_n_copies_proxy<Allocator, T*>(x); }
container_detail::insert_default_initialized_n_proxy<Allocator, T*> priv_resize_proxy(default_init_t)
{ return container_detail::insert_default_initialized_n_proxy<Allocator, T*>(); }
container_detail::insert_value_initialized_n_proxy<Allocator, T*> priv_resize_proxy(value_init_t)
{ return container_detail::insert_value_initialized_n_proxy<Allocator, T*>(); }
template <class U>
void priv_resize(size_type new_size, const U& u)
{
const size_type sz = this->size();
if (new_size < sz){
//Destroy last elements
this->priv_destroy_last_n(sz - new_size);
}
else{
const size_type n = new_size - this->size();
this->priv_forward_range_insert_at_end(n, this->priv_resize_proxy(u), alloc_version());
}
}
void priv_shrink_to_fit(version_0) BOOST_NOEXCEPT_OR_NOTHROW
{}
void priv_shrink_to_fit(version_1)
{
const size_type cp = this->m_holder.capacity();
if(cp){
const size_type sz = this->size();
if(!sz){
this->m_holder.alloc().deallocate(this->m_holder.m_start, cp);
this->m_holder.m_start = pointer();
this->m_holder.m_capacity = 0;
}
else if(sz < cp){
//Allocate a new buffer.
//Pass the hint so that allocators can take advantage of this.
pointer const p = allocator_traits_type::allocate(this->m_holder.alloc(), sz, this->m_holder.m_start);
//We will reuse insert code, so create a dummy input iterator
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_forward_range_insert_new_allocation
( container_detail::to_raw_pointer(p), sz
, this->priv_raw_begin(), 0, this->priv_dummy_empty_proxy());
}
}
}
void priv_shrink_to_fit(version_2) BOOST_NOEXCEPT_OR_NOTHROW
{
const size_type cp = this->m_holder.capacity();
if(cp){
const size_type sz = this->size();
if(!sz){
this->m_holder.alloc().deallocate(this->m_holder.m_start, cp);
this->m_holder.m_start = pointer();
this->m_holder.m_capacity = 0;
}
else{
size_type received_size = sz;
pointer reuse(this->m_holder.start());
if(this->m_holder.allocation_command
(shrink_in_place | nothrow_allocation, cp, received_size, reuse)){
this->m_holder.capacity(received_size);
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_shrink;
#endif
}
}
}
}
template <class InsertionProxy>
iterator priv_forward_range_insert_no_capacity
(const pointer &pos, const size_type, const InsertionProxy , version_0)
{
throw_bad_alloc();
return iterator(pos);
}
template <class InsertionProxy>
iterator priv_forward_range_insert_no_capacity
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, version_1)
{
//Check if we have enough memory or try to expand current memory
const size_type n_pos = pos - this->m_holder.start();
T *const raw_pos = container_detail::to_raw_pointer(pos);
const size_type new_cap = this->m_holder.next_capacity(n);
//Pass the hint so that allocators can take advantage of this.
T * const new_buf = container_detail::to_raw_pointer
(allocator_traits_type::allocate(this->m_holder.alloc(), new_cap, this->m_holder.m_start));
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_forward_range_insert_new_allocation
( new_buf, new_cap, raw_pos, n, insert_range_proxy);
return iterator(this->m_holder.start() + n_pos);
}
template <class InsertionProxy>
iterator priv_forward_range_insert_no_capacity
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, version_2)
{
//Check if we have enough memory or try to expand current memory
T *const raw_pos = container_detail::to_raw_pointer(pos);
const size_type n_pos = raw_pos - this->priv_raw_begin();
//There is not enough memory, allocate a new
//buffer or expand the old one.
size_type real_cap = this->m_holder.next_capacity(n);
pointer reuse(this->m_holder.start());
pointer const ret (this->m_holder.allocation_command
(allocate_new | expand_fwd | expand_bwd, this->m_holder.m_size + n, real_cap, reuse));
//Buffer reallocated
if(reuse){
//Forward expansion, delay insertion
if(this->m_holder.start() == ret){
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_fwd;
#endif
this->m_holder.capacity(real_cap);
//Expand forward
this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
}
//Backwards (and possibly forward) expansion
else{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_bwd;
#endif
this->priv_forward_range_insert_expand_backwards
(container_detail::to_raw_pointer(ret), real_cap, raw_pos, n, insert_range_proxy);
}
}
//New buffer
else{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_forward_range_insert_new_allocation
( container_detail::to_raw_pointer(ret), real_cap, raw_pos, n, insert_range_proxy);
}
return iterator(this->m_holder.start() + n_pos);
}
template <class InsertionProxy>
iterator priv_forward_range_insert
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy)
{
BOOST_ASSERT(this->m_holder.capacity() >= this->m_holder.m_size);
//Check if we have enough memory or try to expand current memory
const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;
bool same_buffer_start = n <= remaining;
if (!same_buffer_start){
return priv_forward_range_insert_no_capacity(pos, n, insert_range_proxy, alloc_version());
}
else{
//Expand forward
T *const raw_pos = container_detail::to_raw_pointer(pos);
const size_type n_pos = raw_pos - this->priv_raw_begin();
this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
return iterator(this->m_holder.start() + n_pos);
}
}
template <class InsertionProxy>
iterator priv_forward_range_insert_at_end
(const size_type n, const InsertionProxy insert_range_proxy, version_0)
{
//Check if we have enough memory or try to expand current memory
const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;
if (n > remaining){
//This will trigger an error
throw_bad_alloc();
}
this->priv_forward_range_insert_at_end_expand_forward(n, insert_range_proxy);
return this->end();
}
template <class InsertionProxy, class AllocVersion>
iterator priv_forward_range_insert_at_end
(const size_type n, const InsertionProxy insert_range_proxy, AllocVersion)
{
return this->priv_forward_range_insert(this->back_ptr(), n, insert_range_proxy);
}
//Takes the range pointed by [first_pos, last_pos) and shifts it to the right
//by 'shift_count'. 'limit_pos' marks the end of constructed elements.
//
//Precondition: first_pos <= last_pos <= limit_pos
//
//The shift operation might cross limit_pos so elements to moved beyond limit_pos
//are uninitialized_moved with an allocator. Other elements are moved.
//
//The shift operation might left uninitialized elements after limit_pos
//and the number of uninitialized elements is returned by the function.
//
//Old situation:
// first_pos last_pos old_limit
// | | |
// ____________V_______V__________________V_____________
//| prefix | range | suffix |raw_mem ~
//|____________|_______|__________________|_____________~
//
//New situation in Case A (hole_size == 0):
// range is moved through move assignments
//
// first_pos last_pos limit_pos
// | | |
// ____________V_______V__________________V_____________
//| prefix' | | | range |suffix'|raw_mem ~
//|________________+______|___^___|_______|_____________~
// | |
// |_>_>_>_>_>^
//
//
//New situation in Case B (hole_size >= 0):
// range is moved through uninitialized moves
//
// first_pos last_pos limit_pos
// | | |
// ____________V_______V__________________V________________
//| prefix' | | | [hole] | range |
//|_______________________________________|________|___^___|
// | |
// |_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_^
//
//New situation in Case C (hole_size == 0):
// range is moved through move assignments and uninitialized moves
//
// first_pos last_pos limit_pos
// | | |
// ____________V_______V__________________V___
//| prefix' | | | range |
//|___________________________________|___^___|
// | |
// |_>_>_>_>_>_>_>_>_>_>_>^
size_type priv_insert_ordered_at_shift_range
(size_type first_pos, size_type last_pos, size_type limit_pos, size_type shift_count)
{
BOOST_ASSERT(first_pos <= last_pos);
BOOST_ASSERT(last_pos <= limit_pos);
//
T* const begin_ptr = this->priv_raw_begin();
T* const first_ptr = begin_ptr + first_pos;
T* const last_ptr = begin_ptr + last_pos;
size_type hole_size = 0;
//Case A:
if((last_pos + shift_count) <= limit_pos){
//All move assigned
boost::container::move_backward(first_ptr, last_ptr, last_ptr + shift_count);
}
//Case B:
else if((first_pos + shift_count) >= limit_pos){
//All uninitialized_moved
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), first_ptr, last_ptr, first_ptr + shift_count);
hole_size = first_pos + shift_count - limit_pos;
}
//Case C:
else{
//Some uninitialized_moved
T* const limit_ptr = begin_ptr + limit_pos;
T* const boundary_ptr = limit_ptr - shift_count;
::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), boundary_ptr, last_ptr, limit_ptr);
//The rest is move assigned
boost::container::move_backward(first_ptr, boundary_ptr, limit_ptr);
}
return hole_size;
}
private:
T *priv_raw_begin() const
{ return container_detail::to_raw_pointer(m_holder.start()); }
T* priv_raw_end() const
{ return this->priv_raw_begin() + this->m_holder.m_size; }
template <class InsertionProxy>
void priv_forward_range_insert_at_end_expand_forward(const size_type n, InsertionProxy insert_range_proxy)
{
T* const old_finish = this->priv_raw_end();
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);
this->m_holder.m_size += n;
}
template <class InsertionProxy>
void priv_forward_range_insert_expand_forward(T* const pos, const size_type n, InsertionProxy insert_range_proxy)
{
//n can't be 0, because there is nothing to do in that case
if(BOOST_UNLIKELY(!n)) return;
//There is enough memory
T* const old_finish = this->priv_raw_end();
const size_type elems_after = old_finish - pos;
if (!elems_after){
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);
this->m_holder.m_size += n;
}
else if (elems_after >= n){
//New elements can be just copied.
//Move to uninitialized memory last objects
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), old_finish - n, old_finish, old_finish);
this->m_holder.m_size += n;
//Copy previous to last objects to the initialized end
boost::container::move_backward(pos, old_finish - n, old_finish);
//Insert new objects in the pos
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, n);
}
else {
//The new elements don't fit in the [pos, end()) range.
//Copy old [pos, end()) elements to the uninitialized memory (a gap is created)
::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), pos, old_finish, pos + n);
BOOST_TRY{
//Copy first new elements in pos (gap is still there)
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, elems_after);
//Copy to the beginning of the unallocated zone the last new elements (the gap is closed).
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n - elems_after);
this->m_holder.m_size += n;
}
BOOST_CATCH(...){
boost::container::destroy_alloc_n(this->get_stored_allocator(), pos + n, elems_after);
BOOST_RETHROW
}
BOOST_CATCH_END
}
}
template <class InsertionProxy>
void priv_forward_range_insert_new_allocation
(T* const new_start, size_type new_cap, T* const pos, const size_type n, InsertionProxy insert_range_proxy)
{
//n can be zero, if we want to reallocate!
T *new_finish = new_start;
T *old_finish;
//Anti-exception rollbacks
typename value_traits::ArrayDeallocator new_buffer_deallocator(new_start, this->m_holder.alloc(), new_cap);
typename value_traits::ArrayDestructor new_values_destroyer(new_start, this->m_holder.alloc(), 0u);
//Initialize with [begin(), pos) old buffer
//the start of the new buffer
T * const old_buffer = this->priv_raw_begin();
if(old_buffer){
new_finish = ::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), this->priv_raw_begin(), pos, old_finish = new_finish);
new_values_destroyer.increment_size(new_finish - old_finish);
}
//Initialize new objects, starting from previous point
old_finish = new_finish;
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);
new_finish += n;
new_values_destroyer.increment_size(new_finish - old_finish);
//Initialize from the rest of the old buffer,
//starting from previous point
if(old_buffer){
new_finish = ::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), pos, old_buffer + this->m_holder.m_size, new_finish);
//Destroy and deallocate old elements
//If there is allocated memory, destroy and deallocate
if(!value_traits::trivial_dctr_after_move)
boost::container::destroy_alloc_n(this->get_stored_allocator(), old_buffer, this->m_holder.m_size);
this->m_holder.alloc().deallocate(this->m_holder.start(), this->m_holder.capacity());
}
this->m_holder.start(new_start);
this->m_holder.m_size = new_finish - new_start;
this->m_holder.capacity(new_cap);
//All construction successful, disable rollbacks
new_values_destroyer.release();
new_buffer_deallocator.release();
}
template <class InsertionProxy>
void priv_forward_range_insert_expand_backwards
(T* const new_start, const size_type new_capacity,
T* const pos, const size_type n, InsertionProxy insert_range_proxy)
{
//n can be zero to just expand capacity
//Backup old data
T* const old_start = this->priv_raw_begin();
const size_type old_size = this->m_holder.m_size;
T* const old_finish = old_start + old_size;
//We can have 8 possibilities:
const size_type elemsbefore = static_cast<size_type>(pos - old_start);
const size_type s_before = static_cast<size_type>(old_start - new_start);
const size_type before_plus_new = elemsbefore + n;
//Update the vector buffer information to a safe state
this->m_holder.start(new_start);
this->m_holder.capacity(new_capacity);
this->m_holder.m_size = 0;
//If anything goes wrong, this object will destroy
//all the old objects to fulfill previous vector state
typename value_traits::ArrayDestructor old_values_destroyer(old_start, this->m_holder.alloc(), old_size);
//Check if s_before is big enough to hold the beginning of old data + new data
if(s_before >= before_plus_new){
//Copy first old values before pos, after that the new objects
T *const new_elem_pos =
::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), old_start, pos, new_start);
this->m_holder.m_size = elemsbefore;
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), new_elem_pos, n);
this->m_holder.m_size = before_plus_new;
const size_type new_size = old_size + n;
//Check if s_before is so big that even copying the old data + new data
//there is a gap between the new data and the old data
if(s_before >= new_size){
//Old situation:
// _________________________________________________________
//| raw_mem | old_begin | old_end |
//| __________________________________|___________|_________|
//
//New situation:
// _________________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|__________|_________|________________________|
//
//Now initialize the rest of memory with the last old values
if(before_plus_new != new_size){ //Special case to avoid operations in back insertion
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), pos, old_finish, new_start + before_plus_new);
//All new elements correctly constructed, avoid new element destruction
this->m_holder.m_size = new_size;
}
//Old values destroyed automatically with "old_values_destroyer"
//when "old_values_destroyer" goes out of scope unless the have trivial
//destructor after move.
if(value_traits::trivial_dctr_after_move)
old_values_destroyer.release();
}
//s_before is so big that divides old_end
else{
//Old situation:
// __________________________________________________
//| raw_mem | old_begin | old_end |
//| ___________________________|___________|_________|
//
//New situation:
// __________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|__________|_________|_________________|
//
//Now initialize the rest of memory with the last old values
//All new elements correctly constructed, avoid new element destruction
const size_type raw_gap = s_before - before_plus_new;
if(!value_traits::trivial_dctr){
//Now initialize the rest of s_before memory with the
//first of elements after new values
::boost::container::uninitialized_move_alloc_n
(this->m_holder.alloc(), pos, raw_gap, new_start + before_plus_new);
//Now we have a contiguous buffer so program trailing element destruction
//and update size to the final size.
old_values_destroyer.shrink_forward(new_size-s_before);
this->m_holder.m_size = new_size;
//Now move remaining last objects in the old buffer begin
T * const remaining_pos = pos + raw_gap;
if(remaining_pos != old_start){ //Make sure data has to be moved
::boost::container::move(remaining_pos, old_finish, old_start);
}
//Once moved, avoid calling the destructors if trivial after move
if(value_traits::trivial_dctr_after_move){
old_values_destroyer.release();
}
}
else{ //If trivial destructor, we can uninitialized copy + copy in a single uninitialized copy
::boost::container::uninitialized_move_alloc_n
(this->m_holder.alloc(), pos, static_cast<size_type>(old_finish - pos), new_start + before_plus_new);
this->m_holder.m_size = new_size;
old_values_destroyer.release();
}
}
}
else{
//Check if we have to do the insertion in two phases
//since maybe s_before is not big enough and
//the buffer was expanded both sides
//
//Old situation:
// _________________________________________________
//| raw_mem | old_begin + old_end | raw_mem |
//|_________|_____________________|_________________|
//
//New situation with do_after:
// _________________________________________________
//| old_begin + new + old_end | raw_mem |
//|___________________________________|_____________|
//
//New without do_after:
// _________________________________________________
//| old_begin + new + old_end | raw_mem |
//|____________________________|____________________|
//
const bool do_after = n > s_before;
//Now we can have two situations: the raw_mem of the
//beginning divides the old_begin, or the new elements:
if (s_before <= elemsbefore) {
//The raw memory divides the old_begin group:
//
//If we need two phase construction (do_after)
//new group is divided in new = new_beg + new_end groups
//In this phase only new_beg will be inserted
//
//Old situation:
// _________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|_________|___________|_________|_________________|
//
//New situation with do_after(1):
//This is not definitive situation, the second phase
//will include
// _________________________________________________
//| old_begin | new_beg | old_end | raw_mem |
//|___________|_________|_________|_________________|
//
//New situation without do_after:
// _________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|_____|_________|_____________________|
//
//Copy the first part of old_begin to raw_mem
::boost::container::uninitialized_move_alloc_n
(this->m_holder.alloc(), old_start, s_before, new_start);
//The buffer is all constructed until old_end,
//so program trailing destruction and assign final size
//if !do_after, s_before+n otherwise.
size_type new_1st_range;
if(do_after){
new_1st_range = s_before;
//release destroyer and update size
old_values_destroyer.release();
}
else{
new_1st_range = n;
if(value_traits::trivial_dctr_after_move)
old_values_destroyer.release();
else{
old_values_destroyer.shrink_forward(old_size - (s_before - n));
}
}
this->m_holder.m_size = old_size + new_1st_range;
//Now copy the second part of old_begin overwriting itself
T *const next = ::boost::container::move(old_start + s_before, pos, old_start);
//Now copy the new_beg elements
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), next, new_1st_range);
//If there is no after work and the last old part needs to be moved to front, do it
if(!do_after && (n != s_before)){
//Now displace old_end elements
::boost::container::move(pos, old_finish, next + new_1st_range);
}
}
else {
//If we have to expand both sides,
//we will play if the first new values so
//calculate the upper bound of new values
//The raw memory divides the new elements
//
//If we need two phase construction (do_after)
//new group is divided in new = new_beg + new_end groups
//In this phase only new_beg will be inserted
//
//Old situation:
// _______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|_______________|___________|_________|_________________|
//
//New situation with do_after():
// ____________________________________________________
//| old_begin | new_beg | old_end | raw_mem |
//|___________|_______________|_________|______________|
//
//New situation without do_after:
// ______________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|_____|_________|__________________________|
//
//First copy whole old_begin and part of new to raw_mem
T * const new_pos = ::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), old_start, pos, new_start);
this->m_holder.m_size = elemsbefore;
const size_type mid_n = s_before - elemsbefore;
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), new_pos, mid_n);
//The buffer is all constructed until old_end,
//release destroyer
this->m_holder.m_size = old_size + s_before;
old_values_destroyer.release();
if(do_after){
//Copy new_beg part
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), old_start, elemsbefore);
}
else{
//Copy all new elements
const size_type rest_new = n - mid_n;
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), old_start, rest_new);
T* const move_start = old_start + rest_new;
//Displace old_end, but make sure data has to be moved
T* const move_end = move_start != pos ? ::boost::container::move(pos, old_finish, move_start)
: old_finish;
//Destroy remaining moved elements from old_end except if they
//have trivial destructor after being moved
size_type n_destroy = s_before - n;
if(!value_traits::trivial_dctr_after_move)
boost::container::destroy_alloc_n(this->get_stored_allocator(), move_end, n_destroy);
this->m_holder.m_size -= n_destroy;
}
}
//This is only executed if two phase construction is needed
if(do_after){
//The raw memory divides the new elements
//
//Old situation:
// ______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|______________|
//
//New situation with do_after(1):
// _______________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_________|________|_________|
//
//New situation with do_after(2):
// ______________________________________________________
//| old_begin + new | old_end |raw |
//|_______________________________________|_________|____|
//
const size_type n_after = n - s_before;
const size_type elemsafter = old_size - elemsbefore;
//We can have two situations:
if (elemsafter >= n_after){
//The raw_mem from end will divide displaced old_end
//
//Old situation:
// ______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|______________|
//
//New situation with do_after(1):
// _______________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_________|________|_________|
//
//First copy the part of old_end raw_mem
T* finish_n = old_finish - n_after;
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), finish_n, old_finish, old_finish);
this->m_holder.m_size += n_after;
//Displace the rest of old_end to the new position
boost::container::move_backward(pos, finish_n, old_finish);
//Now overwrite with new_end
//The new_end part is [first + (n - n_after), last)
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, n_after);
}
else {
//The raw_mem from end will divide new_end part
//
//Old situation:
// _____________________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|_____________________|
//
//New situation with do_after(2):
// _____________________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_______________|________|_________|
//
const size_type mid_last_dist = n_after - elemsafter;
//First initialize data in raw memory
//Copy to the old_end part to the uninitialized zone leaving a gap.
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), pos, old_finish, old_finish + mid_last_dist);
typename value_traits::ArrayDestructor old_end_destroyer
(old_finish + mid_last_dist, this->m_holder.alloc(), old_finish - pos);
//Copy the first part to the already constructed old_end zone
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, elemsafter);
//Copy the rest to the uninitialized zone filling the gap
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, mid_last_dist);
this->m_holder.m_size += n_after;
old_end_destroyer.release();
}
}
}
}
void priv_throw_if_out_of_range(size_type n) const
{
//If n is out of range, throw an out_of_range exception
if (n >= this->size()){
throw_out_of_range("vector::at out of range");
}
}
bool priv_in_range(const_iterator pos) const
{
return (this->begin() <= pos) && (pos < this->end());
}
bool priv_in_range_or_end(const_iterator pos) const
{
return (this->begin() <= pos) && (pos <= this->end());
}
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
public:
unsigned int num_expand_fwd;
unsigned int num_expand_bwd;
unsigned int num_shrink;
unsigned int num_alloc;
void reset_alloc_stats()
{ num_expand_fwd = num_expand_bwd = num_alloc = 0, num_shrink = 0; }
#endif
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
};
}} //namespace boost::container
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace boost {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class Allocator>
struct has_trivial_destructor_after_move<boost::container::vector<T, Allocator> >
{
typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer;
static const bool value = ::boost::has_trivial_destructor_after_move<Allocator>::value &&
::boost::has_trivial_destructor_after_move<pointer>::value;
};
}
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
#include <boost/container/detail/config_end.hpp>
#endif // #ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP