verdnatura-chat/ios/Pods/boost-for-react-native/boost/numeric/ublas/io.hpp

356 lines
14 KiB
C++

//
// Copyright (c) 2000-2010
// Joerg Walter, Mathias Koch, David Bellot
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_IO_
#define _BOOST_UBLAS_IO_
// Only forward definition required to define stream operations
#include <iosfwd>
#include <sstream>
#include <boost/numeric/ublas/matrix_expression.hpp>
namespace boost { namespace numeric { namespace ublas {
/** \brief output stream operator for vector expressions
*
* Any vector expressions can be written to a standard output stream
* as defined in the C++ standard library. For example:
* \code
* vector<float> v1(3),v2(3);
* for(size_t i=0; i<3; i++)
* {
* v1(i) = i+0.2;
* v2(i) = i+0.3;
* }
* cout << v1+v2 << endl;
* \endcode
* will display the some of the 2 vectors like this:
* \code
* [3](0.5,2.5,4.5)
* \endcode
*
* \param os is a standard basic output stream
* \param v is a vector expression
* \return a reference to the resulting output stream
*/
template<class E, class T, class VE>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::basic_ostream<E, T> &operator << (std::basic_ostream<E, T> &os,
const vector_expression<VE> &v) {
typedef typename VE::size_type size_type;
size_type size = v ().size ();
std::basic_ostringstream<E, T, std::allocator<E> > s;
s.flags (os.flags ());
s.imbue (os.getloc ());
s.precision (os.precision ());
s << '[' << size << "](";
if (size > 0)
s << v () (0);
for (size_type i = 1; i < size; ++ i)
s << ',' << v () (i);
s << ')';
return os << s.str ().c_str ();
}
/** \brief input stream operator for vectors
*
* This is used to feed in vectors with data stored as an ASCII representation
* from a standard input stream.
*
* From a file or any valid stream, the format is:
* \c [<vector size>](<data1>,<data2>,...<dataN>) like for example:
* \code
* [5](1,2.1,3.2,3.14,0.2)
* \endcode
*
* You can use it like this
* \code
* my_input_stream >> my_vector;
* \endcode
*
* You can only put data into a valid \c vector<> not a \c vector_expression
*
* \param is is a standard basic input stream
* \param v is a vector
* \return a reference to the resulting input stream
*/
template<class E, class T, class VT, class VA>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::basic_istream<E, T> &operator >> (std::basic_istream<E, T> &is,
vector<VT, VA> &v) {
typedef typename vector<VT, VA>::size_type size_type;
E ch;
size_type size;
if (is >> ch && ch != '[') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (is >> size >> ch && ch != ']') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
vector<VT, VA> s (size);
if (is >> ch && ch != '(') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
for (size_type i = 0; i < size; i ++) {
if (is >> s (i) >> ch && ch != ',') {
is.putback (ch);
if (i < size - 1)
is.setstate (std::ios_base::failbit);
break;
}
}
if (is >> ch && ch != ')') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
}
}
if (! is.fail ())
v.swap (s);
}
return is;
}
/** \brief output stream operator for matrix expressions
*
* it outpus the content of a \f$(M \times N)\f$ matrix to a standard output
* stream using the following format:
* \c[<rows>,<columns>]((<m00>,<m01>,...,<m0N>),...,(<mM0>,<mM1>,...,<mMN>))
*
* For example:
* \code
* matrix<float> m(3,3) = scalar_matrix<float>(3,3,1.0) - diagonal_matrix<float>(3,3,1.0);
* cout << m << endl;
* \encode
* will display
* \code
* [3,3]((0,1,1),(1,0,1),(1,1,0))
* \endcode
* This output is made for storing and retrieving matrices in a simple way but you can
* easily recognize the following:
* \f[ \left( \begin{array}{ccc} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{array} \right) - \left( \begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right) = \left( \begin{array}{ccc} 0 & 1 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{array} \right) \f]
*
* \param os is a standard basic output stream
* \param m is a matrix expression
* \return a reference to the resulting output stream
*/
template<class E, class T, class ME>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::basic_ostream<E, T> &operator << (std::basic_ostream<E, T> &os,
const matrix_expression<ME> &m) {
typedef typename ME::size_type size_type;
size_type size1 = m ().size1 ();
size_type size2 = m ().size2 ();
std::basic_ostringstream<E, T, std::allocator<E> > s;
s.flags (os.flags ());
s.imbue (os.getloc ());
s.precision (os.precision ());
s << '[' << size1 << ',' << size2 << "](";
if (size1 > 0) {
s << '(' ;
if (size2 > 0)
s << m () (0, 0);
for (size_type j = 1; j < size2; ++ j)
s << ',' << m () (0, j);
s << ')';
}
for (size_type i = 1; i < size1; ++ i) {
s << ",(" ;
if (size2 > 0)
s << m () (i, 0);
for (size_type j = 1; j < size2; ++ j)
s << ',' << m () (i, j);
s << ')';
}
s << ')';
return os << s.str ().c_str ();
}
/** \brief input stream operator for matrices
*
* This is used to feed in matrices with data stored as an ASCII representation
* from a standard input stream.
*
* From a file or any valid standard stream, the format is:
* \c[<rows>,<columns>]((<m00>,<m01>,...,<m0N>),...,(<mM0>,<mM1>,...,<mMN>))
*
* You can use it like this
* \code
* my_input_stream >> my_matrix;
* \endcode
*
* You can only put data into a valid \c matrix<> not a \c matrix_expression
*
* \param is is a standard basic input stream
* \param m is a matrix
* \return a reference to the resulting input stream
*/
template<class E, class T, class MT, class MF, class MA>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::basic_istream<E, T> &operator >> (std::basic_istream<E, T> &is,
matrix<MT, MF, MA> &m) {
typedef typename matrix<MT, MF, MA>::size_type size_type;
E ch;
size_type size1, size2;
if (is >> ch && ch != '[') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (is >> size1 >> ch && ch != ',') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (is >> size2 >> ch && ch != ']') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
matrix<MT, MF, MA> s (size1, size2);
if (is >> ch && ch != '(') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
for (size_type i = 0; i < size1; i ++) {
if (is >> ch && ch != '(') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
break;
}
for (size_type j = 0; j < size2; j ++) {
if (is >> s (i, j) >> ch && ch != ',') {
is.putback (ch);
if (j < size2 - 1) {
is.setstate (std::ios_base::failbit);
break;
}
}
}
if (is >> ch && ch != ')') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
break;
}
if (is >> ch && ch != ',') {
is.putback (ch);
if (i < size1 - 1) {
is.setstate (std::ios_base::failbit);
break;
}
}
}
if (is >> ch && ch != ')') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
}
}
if (! is.fail ())
m.swap (s);
}
return is;
}
/** \brief special input stream operator for symmetric matrices
*
* This is used to feed in symmetric matrices with data stored as an ASCII
* representation from a standard input stream.
*
* You can simply write your matrices in a file or any valid stream and read them again
* at a later time with this function. The format is the following:
* \code [<rows>,<columns>]((<m00>,<m01>,...,<m0N>),...,(<mM0>,<mM1>,...,<mMN>)) \endcode
*
* You can use it like this
* \code
* my_input_stream >> my_symmetric_matrix;
* \endcode
*
* You can only put data into a valid \c symmetric_matrix<>, not in a \c matrix_expression
* This function also checks that input data form a valid symmetric matrix
*
* \param is is a standard basic input stream
* \param m is a \c symmetric_matrix
* \return a reference to the resulting input stream
*/
template<class E, class T, class MT, class MF1, class MF2, class MA>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::basic_istream<E, T> &operator >> (std::basic_istream<E, T> &is,
symmetric_matrix<MT, MF1, MF2, MA> &m) {
typedef typename symmetric_matrix<MT, MF1, MF2, MA>::size_type size_type;
E ch;
size_type size1, size2;
MT value;
if (is >> ch && ch != '[') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (is >> size1 >> ch && ch != ',') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (is >> size2 >> ch && (size2 != size1 || ch != ']')) { // symmetric matrix must be square
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
symmetric_matrix<MT, MF1, MF2, MA> s (size1, size2);
if (is >> ch && ch != '(') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
for (size_type i = 0; i < size1; i ++) {
if (is >> ch && ch != '(') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
break;
}
for (size_type j = 0; j < size2; j ++) {
if (is >> value >> ch && ch != ',') {
is.putback (ch);
if (j < size2 - 1) {
is.setstate (std::ios_base::failbit);
break;
}
}
if (i <= j) {
// this is the first time we read this element - set the value
s(i,j) = value;
}
else if ( s(i,j) != value ) {
// matrix is not symmetric
is.setstate (std::ios_base::failbit);
break;
}
}
if (is >> ch && ch != ')') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
break;
}
if (is >> ch && ch != ',') {
is.putback (ch);
if (i < size1 - 1) {
is.setstate (std::ios_base::failbit);
break;
}
}
}
if (is >> ch && ch != ')') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
}
}
if (! is.fail ())
m.swap (s);
}
return is;
}
}}}
#endif