verdnatura-chat/ios/Pods/Flipper-Folly/folly/ConstexprMath.h

384 lines
13 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cstdint>
#include <functional>
#include <limits>
#include <type_traits>
namespace folly {
// TLDR: Prefer using operator< for ordering. And when
// a and b are equivalent objects, we return b to make
// sorting stable.
// See http://stepanovpapers.com/notes.pdf for details.
template <typename T>
constexpr T constexpr_max(T a) {
return a;
}
template <typename T, typename... Ts>
constexpr T constexpr_max(T a, T b, Ts... ts) {
return b < a ? constexpr_max(a, ts...) : constexpr_max(b, ts...);
}
// When a and b are equivalent objects, we return a to
// make sorting stable.
template <typename T>
constexpr T constexpr_min(T a) {
return a;
}
template <typename T, typename... Ts>
constexpr T constexpr_min(T a, T b, Ts... ts) {
return b < a ? constexpr_min(b, ts...) : constexpr_min(a, ts...);
}
template <typename T, typename Less>
constexpr T const&
constexpr_clamp(T const& v, T const& lo, T const& hi, Less less) {
return less(v, lo) ? lo : less(hi, v) ? hi : v;
}
template <typename T>
constexpr T const& constexpr_clamp(T const& v, T const& lo, T const& hi) {
return constexpr_clamp(v, lo, hi, std::less<T>{});
}
namespace detail {
template <typename T, typename = void>
struct constexpr_abs_helper {};
template <typename T>
struct constexpr_abs_helper<
T,
typename std::enable_if<std::is_floating_point<T>::value>::type> {
static constexpr T go(T t) {
return t < static_cast<T>(0) ? -t : t;
}
};
template <typename T>
struct constexpr_abs_helper<
T,
typename std::enable_if<
std::is_integral<T>::value && !std::is_same<T, bool>::value &&
std::is_unsigned<T>::value>::type> {
static constexpr T go(T t) {
return t;
}
};
template <typename T>
struct constexpr_abs_helper<
T,
typename std::enable_if<
std::is_integral<T>::value && !std::is_same<T, bool>::value &&
std::is_signed<T>::value>::type> {
static constexpr typename std::make_unsigned<T>::type go(T t) {
return typename std::make_unsigned<T>::type(t < static_cast<T>(0) ? -t : t);
}
};
} // namespace detail
template <typename T>
constexpr auto constexpr_abs(T t)
-> decltype(detail::constexpr_abs_helper<T>::go(t)) {
return detail::constexpr_abs_helper<T>::go(t);
}
namespace detail {
template <typename T>
constexpr T constexpr_log2_(T a, T e) {
return e == T(1) ? a : constexpr_log2_(a + T(1), e / T(2));
}
template <typename T>
constexpr T constexpr_log2_ceil_(T l2, T t) {
return l2 + T(T(1) << l2 < t ? 1 : 0);
}
template <typename T>
constexpr T constexpr_square_(T t) {
return t * t;
}
} // namespace detail
template <typename T>
constexpr T constexpr_log2(T t) {
return detail::constexpr_log2_(T(0), t);
}
template <typename T>
constexpr T constexpr_log2_ceil(T t) {
return detail::constexpr_log2_ceil_(constexpr_log2(t), t);
}
template <typename T>
constexpr T constexpr_ceil(T t, T round) {
return round == T(0)
? t
: ((t + (t < T(0) ? T(0) : round - T(1))) / round) * round;
}
template <typename T>
constexpr T constexpr_pow(T base, std::size_t exp) {
return exp == 0
? T(1)
: exp == 1 ? base
: detail::constexpr_square_(constexpr_pow(base, exp / 2)) *
(exp % 2 ? base : T(1));
}
/// constexpr_find_last_set
///
/// Return the 1-based index of the most significant bit which is set.
/// For x > 0, constexpr_find_last_set(x) == 1 + floor(log2(x)).
template <typename T>
constexpr std::size_t constexpr_find_last_set(T const t) {
using U = std::make_unsigned_t<T>;
return t == T(0) ? 0 : 1 + constexpr_log2(static_cast<U>(t));
}
namespace detail {
template <typename U>
constexpr std::size_t
constexpr_find_first_set_(std::size_t s, std::size_t a, U const u) {
return s == 0 ? a
: constexpr_find_first_set_(
s / 2, a + s * bool((u >> a) % (U(1) << s) == U(0)), u);
}
} // namespace detail
/// constexpr_find_first_set
///
/// Return the 1-based index of the least significant bit which is set.
/// For x > 0, the exponent in the largest power of two which does not divide x.
template <typename T>
constexpr std::size_t constexpr_find_first_set(T t) {
using U = std::make_unsigned_t<T>;
using size = std::integral_constant<std::size_t, sizeof(T) * 4>;
return t == T(0)
? 0
: 1 + detail::constexpr_find_first_set_(size{}, 0, static_cast<U>(t));
}
template <typename T>
constexpr T constexpr_add_overflow_clamped(T a, T b) {
using L = std::numeric_limits<T>;
using M = std::intmax_t;
static_assert(
!std::is_integral<T>::value || sizeof(T) <= sizeof(M),
"Integral type too large!");
// clang-format off
return
// don't do anything special for non-integral types.
!std::is_integral<T>::value ? a + b :
// for narrow integral types, just convert to intmax_t.
sizeof(T) < sizeof(M)
? T(constexpr_clamp(M(a) + M(b), M(L::min()), M(L::max()))) :
// when a >= 0, cannot add more than `MAX - a` onto a.
!(a < 0) ? a + constexpr_min(b, T(L::max() - a)) :
// a < 0 && b >= 0, `a + b` will always be in valid range of type T.
!(b < 0) ? a + b :
// a < 0 && b < 0, keep the result >= MIN.
a + constexpr_max(b, T(L::min() - a));
// clang-format on
}
template <typename T>
constexpr T constexpr_sub_overflow_clamped(T a, T b) {
using L = std::numeric_limits<T>;
using M = std::intmax_t;
static_assert(
!std::is_integral<T>::value || sizeof(T) <= sizeof(M),
"Integral type too large!");
// clang-format off
return
// don't do anything special for non-integral types.
!std::is_integral<T>::value ? a - b :
// for unsigned type, keep result >= 0.
std::is_unsigned<T>::value ? (a < b ? 0 : a - b) :
// for narrow signed integral types, just convert to intmax_t.
sizeof(T) < sizeof(M)
? T(constexpr_clamp(M(a) - M(b), M(L::min()), M(L::max()))) :
// (a >= 0 && b >= 0) || (a < 0 && b < 0), `a - b` will always be valid.
(a < 0) == (b < 0) ? a - b :
// MIN < b, so `-b` should be in valid range (-MAX <= -b <= MAX),
// convert subtraction to addition.
L::min() < b ? constexpr_add_overflow_clamped(a, T(-b)) :
// -b = -MIN = (MAX + 1) and a <= -1, result is in valid range.
a < 0 ? a - b :
// -b = -MIN = (MAX + 1) and a >= 0, result > MAX.
L::max();
// clang-format on
}
// clamp_cast<> provides sane numeric conversions from float point numbers to
// integral numbers, and between different types of integral numbers. It helps
// to avoid unexpected bugs introduced by bad conversion, and undefined behavior
// like overflow when casting float point numbers to integral numbers.
//
// When doing clamp_cast<Dst>(value), if `value` is in valid range of Dst,
// it will give correct result in Dst, equal to `value`.
//
// If `value` is outside the representable range of Dst, it will be clamped to
// MAX or MIN in Dst, instead of being undefined behavior.
//
// Float NaNs are converted to 0 in integral type.
//
// Here's some comparision with static_cast<>:
// (with FB-internal gcc-5-glibc-2.23 toolchain)
//
// static_cast<int32_t>(NaN) = 6
// clamp_cast<int32_t>(NaN) = 0
//
// static_cast<int32_t>(9999999999.0f) = -348639895
// clamp_cast<int32_t>(9999999999.0f) = 2147483647
//
// static_cast<int32_t>(2147483647.0f) = -348639895
// clamp_cast<int32_t>(2147483647.0f) = 2147483647
//
// static_cast<uint32_t>(4294967295.0f) = 0
// clamp_cast<uint32_t>(4294967295.0f) = 4294967295
//
// static_cast<uint32_t>(-1) = 4294967295
// clamp_cast<uint32_t>(-1) = 0
//
// static_cast<int16_t>(32768u) = -32768
// clamp_cast<int16_t>(32768u) = 32767
template <typename Dst, typename Src>
constexpr typename std::enable_if<std::is_integral<Src>::value, Dst>::type
constexpr_clamp_cast(Src src) {
static_assert(
std::is_integral<Dst>::value && sizeof(Dst) <= sizeof(int64_t),
"constexpr_clamp_cast can only cast into integral type (up to 64bit)");
using L = std::numeric_limits<Dst>;
// clang-format off
return
// Check if Src and Dst have same signedness.
std::is_signed<Src>::value == std::is_signed<Dst>::value
? (
// Src and Dst have same signedness. If sizeof(Src) <= sizeof(Dst),
// we can safely convert Src to Dst without any loss of accuracy.
sizeof(Src) <= sizeof(Dst) ? Dst(src) :
// If Src is larger in size, we need to clamp it to valid range in Dst.
Dst(constexpr_clamp(src, Src(L::min()), Src(L::max()))))
// Src and Dst have different signedness.
// Check if it's signed -> unsigend cast.
: std::is_signed<Src>::value && std::is_unsigned<Dst>::value
? (
// If src < 0, the result should be 0.
src < 0 ? Dst(0) :
// Otherwise, src >= 0. If src can fit into Dst, we can safely cast it
// without loss of accuracy.
sizeof(Src) <= sizeof(Dst) ? Dst(src) :
// If Src is larger in size than Dst, we need to ensure the result is
// at most Dst MAX.
Dst(constexpr_min(src, Src(L::max()))))
// It's unsigned -> signed cast.
: (
// Since Src is unsigned, and Dst is signed, Src can fit into Dst only
// when sizeof(Src) < sizeof(Dst).
sizeof(Src) < sizeof(Dst) ? Dst(src) :
// If Src does not fit into Dst, we need to ensure the result is at most
// Dst MAX.
Dst(constexpr_min(src, Src(L::max()))));
// clang-format on
}
namespace detail {
// Upper/lower bound values that could be accurately represented in both
// integral and float point types.
constexpr double kClampCastLowerBoundDoubleToInt64F = -9223372036854774784.0;
constexpr double kClampCastUpperBoundDoubleToInt64F = 9223372036854774784.0;
constexpr double kClampCastUpperBoundDoubleToUInt64F = 18446744073709549568.0;
constexpr float kClampCastLowerBoundFloatToInt32F = -2147483520.0f;
constexpr float kClampCastUpperBoundFloatToInt32F = 2147483520.0f;
constexpr float kClampCastUpperBoundFloatToUInt32F = 4294967040.0f;
// This works the same as constexpr_clamp, but the comparision are done in Src
// to prevent any implicit promotions.
template <typename D, typename S>
constexpr D constexpr_clamp_cast_helper(S src, S sl, S su, D dl, D du) {
return src < sl ? dl : (src > su ? du : D(src));
}
} // namespace detail
template <typename Dst, typename Src>
constexpr typename std::enable_if<std::is_floating_point<Src>::value, Dst>::type
constexpr_clamp_cast(Src src) {
static_assert(
std::is_integral<Dst>::value && sizeof(Dst) <= sizeof(int64_t),
"constexpr_clamp_cast can only cast into integral type (up to 64bit)");
using L = std::numeric_limits<Dst>;
// clang-format off
return
// Special case: cast NaN into 0.
// Using a trick here to portably check for NaN: f != f only if f is NaN.
// see: https://stackoverflow.com/a/570694
(src != src) ? Dst(0) :
// using `sizeof(Src) > sizeof(Dst)` as a heuristic that Dst can be
// represented in Src without loss of accuracy.
// see: https://en.wikipedia.org/wiki/Floating-point_arithmetic
sizeof(Src) > sizeof(Dst) ?
detail::constexpr_clamp_cast_helper(
src, Src(L::min()), Src(L::max()), L::min(), L::max()) :
// sizeof(Src) < sizeof(Dst) only happens when doing cast of
// 32bit float -> u/int64_t.
// Losslessly promote float into double, change into double -> u/int64_t.
sizeof(Src) < sizeof(Dst) ? (
src >= 0.0
? constexpr_clamp_cast<Dst>(
constexpr_clamp_cast<std::uint64_t>(double(src)))
: constexpr_clamp_cast<Dst>(
constexpr_clamp_cast<std::int64_t>(double(src)))) :
// The following are for sizeof(Src) == sizeof(Dst).
std::is_same<Src, double>::value && std::is_same<Dst, int64_t>::value ?
detail::constexpr_clamp_cast_helper(
double(src),
detail::kClampCastLowerBoundDoubleToInt64F,
detail::kClampCastUpperBoundDoubleToInt64F,
L::min(),
L::max()) :
std::is_same<Src, double>::value && std::is_same<Dst, uint64_t>::value ?
detail::constexpr_clamp_cast_helper(
double(src),
0.0,
detail::kClampCastUpperBoundDoubleToUInt64F,
L::min(),
L::max()) :
std::is_same<Src, float>::value && std::is_same<Dst, int32_t>::value ?
detail::constexpr_clamp_cast_helper(
float(src),
detail::kClampCastLowerBoundFloatToInt32F,
detail::kClampCastUpperBoundFloatToInt32F,
L::min(),
L::max()) :
detail::constexpr_clamp_cast_helper(
float(src),
0.0f,
detail::kClampCastUpperBoundFloatToUInt32F,
L::min(),
L::max());
// clang-format on
}
} // namespace folly