verdnatura-chat/ios/Pods/Flipper-Folly/folly/concurrency/DynamicBoundedQueue.h

740 lines
23 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <folly/concurrency/CacheLocality.h>
#include <folly/concurrency/UnboundedQueue.h>
#include <glog/logging.h>
#include <atomic>
#include <chrono>
namespace folly {
/// DynamicBoundedQueue supports:
/// - Dynamic memory usage that grows and shrink in proportion to the
/// number of elements in the queue.
/// - Adjustable capacity that helps throttle pathological cases of
/// producer-consumer imbalance that may lead to excessive memory
/// usage.
/// - The adjustable capacity can also help prevent deadlock by
/// allowing users to temporarily increase capacity substantially to
/// guarantee accommodating producer requests that cannot wait.
/// - SPSC, SPMC, MPSC, MPMC variants.
/// - Blocking and spinning-only variants.
/// - Inter-operable non-waiting, timed until, timed for, and waiting
/// variants of producer and consumer operations.
/// - Optional variable element weights.
///
/// Element Weights
/// - Queue elements may have variable weights (calculated using a
/// template parameter) that are by default 1.
/// - Element weights count towards the queue's capacity.
/// - Elements weights are not priorities and do not affect element
/// order. Queues with variable element weights follow FIFO order,
/// the same as default queues.
///
/// When to use DynamicBoundedQueue:
/// - If a small maximum capacity may lead to deadlock or performance
/// degradation under bursty patterns and a larger capacity is
/// sufficient.
/// - If the typical queue size is expected to be much lower than the
/// maximum capacity
/// - If an unbounded queue is susceptible to growing too much.
/// - If support for variable element weights is needed.
///
/// When not to use DynamicBoundedQueue?
/// - If dynamic memory allocation is unacceptable or if the maximum
/// capacity needs to be small, then use fixed-size MPMCQueue or (if
/// non-blocking SPSC) ProducerConsumerQueue.
/// - If there is no risk of the queue growing too much, then use
/// UnboundedQueue.
///
/// Setting capacity
/// - The general rule is to set the capacity as high as acceptable.
/// The queue performs best when it is not near full capacity.
/// - The implementation may allow extra slack in capacity (~10%) for
/// amortizing some costly steps. Therefore, precise capacity is not
/// guaranteed and cannot be relied on for synchronization; i.e.,
/// this queue cannot be used as a semaphore.
///
/// Performance expectations:
/// - As long as the queue size is below capacity in the common case,
/// performance is comparable to MPMCQueue and better in cases of
/// higher producer demand.
/// - Performance degrades gracefully at full capacity.
/// - It is recommended to measure performance with different variants
/// when applicable, e.g., DMPMC vs DMPSC. Depending on the use
/// case, sometimes the variant with the higher sequential overhead
/// may yield better results due to, for example, more favorable
/// producer-consumer balance or favorable timing for avoiding
/// costly blocking.
/// - See DynamicBoundedQueueTest.cpp for some benchmark results.
///
/// Template parameters:
/// - T: element type
/// - SingleProducer: true if there can be only one producer at a
/// time.
/// - SingleConsumer: true if there can be only one consumer at a
/// time.
/// - MayBlock: true if producers or consumers may block.
/// - LgSegmentSize (default 8): Log base 2 of number of elements per
/// UnboundedQueue segment.
/// - LgAlign (default 7): Log base 2 of alignment directive; can be
/// used to balance scalability (avoidance of false sharing) with
/// memory efficiency.
/// - WeightFn (DefaultWeightFn<T>): A customizable weight computing type
/// for computing the weights of elements. The default weight is 1.
///
/// Template Aliases:
/// DSPSCQueue<T, MayBlock, LgSegmentSize, LgAlign>
/// DMPSCQueue<T, MayBlock, LgSegmentSize, LgAlign>
/// DSPMCQueue<T, MayBlock, LgSegmentSize, LgAlign>
/// DMPMCQueue<T, MayBlock, LgSegmentSize, LgAlign>
///
/// Functions:
/// Constructor
/// Takes a capacity value as an argument.
///
/// Producer functions:
/// void enqueue(const T&);
/// void enqueue(T&&);
/// Adds an element to the end of the queue. Waits until
/// capacity is available if necessary.
/// bool try_enqueue(const T&);
/// bool try_enqueue(T&&);
/// Tries to add an element to the end of the queue if
/// capacity allows it. Returns true if successful. Otherwise
/// Returns false.
/// bool try_enqueue_until(const T&, time_point& deadline);
/// bool try_enqueue_until(T&&, time_point& deadline);
/// Tries to add an element to the end of the queue if
/// capacity allows it until the specified deadline. Returns
/// true if successful, otherwise false.
/// bool try_enqueue_for(const T&, duration&);
/// bool try_enqueue_for(T&&, duration&);
/// Tries to add an element to the end of the queue if
/// capacity allows until the expiration of the specified
/// duration. Returns true if successful, otherwise false.
///
/// Consumer functions:
/// void dequeue(T&);
/// Extracts an element from the front of the queue. Waits
/// until an element is available if necessary.
/// bool try_dequeue(T&);
/// Tries to extracts an element from the front of the queue
/// if available. Returns true if successful, otherwise false.
/// bool try_dequeue_until(T&, time_point& deadline);
/// Tries to extracts an element from the front of the queue
/// if available until the specified daedline. Returns true
/// if successful. Otherwise Returns false.
/// bool try_dequeue_for(T&, duration&);
/// Tries to extracts an element from the front of the queue
/// if available until the expiration of the specified
/// duration. Returns true if successful. Otherwise Returns
/// false.
///
/// Secondary functions:
/// void reset_capacity(size_t capacity);
/// Changes the capacity of the queue. Does not affect the
/// current contents of the queue. Guaranteed only to affect
/// subsequent enqueue operations. May or may not affect
/// concurrent operations. Capacity must be at least 1000.
/// Weight weight();
/// Returns an estimate of the total weight of the elements in
/// the queue.
/// size_t size();
/// Returns an estimate of the total number of elements.
/// bool empty();
/// Returns true only if the queue was empty during the call.
/// Note: weight(), size(), and empty() are guaranteed to be
/// accurate only if there are no concurrent changes to the queue.
///
/// Usage example with default weight:
/// @code
/// /* DMPSC, doesn't block, 1024 int elements per segment */
/// DMPSCQueue<int, false, 10> q(100000);
/// ASSERT_TRUE(q.empty());
/// ASSERT_EQ(q.size(), 0);
/// q.enqueue(1));
/// ASSERT_TRUE(q.try_enqueue(2));
/// ASSERT_TRUE(q.try_enqueue_until(3, deadline));
/// ASSERT_TRUE(q.try_enqueue(4, duration));
/// // ... enqueue more elements until capacity is full
/// // See above comments about imprecise capacity guarantees
/// ASSERT_FALSE(q.try_enqueue(100001)); // can't enqueue but can't wait
/// size_t sz = q.size();
/// ASSERT_GE(sz, 100000);
/// q.reset_capacity(1000000000); // set huge capacity
/// ASSERT_TRUE(q.try_enqueue(100001)); // now enqueue succeeds
/// q.reset_capacity(100000); // set capacity back to 100,000
/// ASSERT_FALSE(q.try_enqueue(100002));
/// ASSERT_EQ(q.size(), sz + 1);
/// int v;
/// q.dequeue(v);
/// ASSERT_EQ(v, 1);
/// ASSERT_TRUE(q.try_dequeue(v));
/// ASSERT_EQ(v, 2);
/// ASSERT_TRUE(q.try_dequeue_until(v, deadline));
/// ASSERT_EQ(v, 3);
/// ASSERT_TRUE(q.try_dequeue_for(v, duration));
/// ASSERT_EQ(v, 4);
/// ASSERT_EQ(q.size(), sz - 3);
/// @endcode
///
/// Usage example with custom weights:
/// @code
/// struct CustomWeightFn {
/// uint64_t operator()(int val) { return val / 100; }
/// };
/// DMPMCQueue<int, false, 10, CustomWeightFn> q(20);
/// ASSERT_TRUE(q.empty());
/// q.enqueue(100);
/// ASSERT_TRUE(q.try_enqueue(200));
/// ASSERT_TRUE(q.try_enqueue_until(500, now() + seconds(1)));
/// ASSERT_EQ(q.size(), 3);
/// ASSERT_EQ(q.weight(), 8);
/// ASSERT_FALSE(q.try_enqueue_for(1700, microseconds(1)));
/// q.reset_capacity(1000000); // set capacity to 1000000 instead of 20
/// ASSERT_TRUE(q.try_enqueue_for(1700, microseconds(1)));
/// q.reset_capacity(20); // set capacity to 20 again
/// ASSERT_FALSE(q.try_enqueue(100));
/// ASSERT_EQ(q.size(), 4);
/// ASSERT_EQ(q.weight(), 25);
/// int v;
/// q.dequeue(v);
/// ASSERT_EQ(v, 100);
/// ASSERT_TRUE(q.try_dequeue(v));
/// ASSERT_EQ(v, 200);
/// ASSERT_TRUE(q.try_dequeue_until(v, now() + seconds(1)));
/// ASSERT_EQ(v, 500);
/// ASSERT_EQ(q.size(), 1);
/// ASSERT_EQ(q.weight(), 17);
/// @endcode
///
/// Design:
/// - The implementation is on top of UnboundedQueue.
/// - The main FIFO functionality is in UnboundedQueue.
/// DynamicBoundedQueue manages keeping the total queue weight
/// within the specified capacity.
/// - For the sake of scalability, the data structures are designed to
/// minimize interference between producers on one side and
/// consumers on the other.
/// - Producers add to a debit variable the weight of the added
/// element and check capacity.
/// - Consumers add to a credit variable the weight of the removed
/// element.
/// - Producers, for the sake of scalability, use fetch_add to add to
/// the debit variable and subtract if it exceeded capacity,
/// rather than using compare_exchange to avoid overshooting.
/// - Consumers, infrequently, transfer credit to a transfer variable
/// and unblock any blocked producers. The transfer variable can be
/// used by producers to decrease their debit when needed.
/// - Note that a low capacity will trigger frequent credit transfer
/// by consumers that may degrade performance. Capacity should not
/// be set too low.
/// - Transfer of credit by consumers is triggered when the amount of
/// credit reaches a threshold (1/10 of capacity).
/// - The waiting of consumers is handled in UnboundedQueue.
/// The waiting of producers is handled in this template.
/// - For a producer operation, if the difference between debit and
/// capacity (plus some slack to account for the transfer threshold)
/// does not accommodate the weight of the new element, it first
/// tries to transfer credit that may have already been made
/// available by consumers. If this is insufficient and MayBlock is
/// true, then the producer uses a futex to block until new credit
/// is transferred by a consumer.
///
/// Memory Usage:
/// - Aside from three cache lines for managing capacity, the memory
/// for queue elements is managed using UnboundedQueue and grows and
/// shrinks dynamically with the number of elements.
/// - The template parameter LgAlign can be used to reduce memory usage
/// at the cost of increased chance of false sharing.
template <typename T>
struct DefaultWeightFn {
template <typename Arg>
uint64_t operator()(Arg&&) const noexcept {
return 1;
}
};
template <
typename T,
bool SingleProducer,
bool SingleConsumer,
bool MayBlock,
size_t LgSegmentSize = 8,
size_t LgAlign = 7,
typename WeightFn = DefaultWeightFn<T>,
template <typename> class Atom = std::atomic>
class DynamicBoundedQueue {
using Weight = uint64_t;
enum WaitingState : uint32_t {
NOTWAITING = 0,
WAITING = 1,
};
static constexpr bool SPSC = SingleProducer && SingleConsumer;
static constexpr size_t Align = 1u << LgAlign;
static_assert(LgAlign < 16, "LgAlign must be < 16");
/// Data members
// Read mostly by producers
alignas(Align) Atom<Weight> debit_; // written frequently only by producers
Atom<Weight> capacity_; // written rarely by capacity resets
// Read mostly by consumers
alignas(Align) Atom<Weight> credit_; // written frequently only by consumers
Atom<Weight> threshold_; // written rarely only by capacity resets
// Normally written and read rarely by producers and consumers
// May be read frequently by producers when capacity is full
alignas(Align) Atom<Weight> transfer_;
detail::Futex<Atom> waiting_;
// Underlying unbounded queue
UnboundedQueue<
T,
SingleProducer,
SingleConsumer,
MayBlock,
LgSegmentSize,
LgAlign,
Atom>
q_;
public:
/** constructor */
explicit DynamicBoundedQueue(Weight capacity)
: debit_(0),
capacity_(capacity + threshold(capacity)), // capacity slack
credit_(0),
threshold_(threshold(capacity)),
transfer_(0),
waiting_(0) {}
/** destructor */
~DynamicBoundedQueue() {}
/// Enqueue functions
/** enqueue */
FOLLY_ALWAYS_INLINE void enqueue(const T& v) {
enqueueImpl(v);
}
FOLLY_ALWAYS_INLINE void enqueue(T&& v) {
enqueueImpl(std::move(v));
}
/** try_enqueue */
FOLLY_ALWAYS_INLINE bool try_enqueue(const T& v) {
return tryEnqueueImpl(v);
}
FOLLY_ALWAYS_INLINE bool try_enqueue(T&& v) {
return tryEnqueueImpl(std::move(v));
}
/** try_enqueue_until */
template <typename Clock, typename Duration>
FOLLY_ALWAYS_INLINE bool try_enqueue_until(
const T& v,
const std::chrono::time_point<Clock, Duration>& deadline) {
return tryEnqueueUntilImpl(v, deadline);
}
template <typename Clock, typename Duration>
FOLLY_ALWAYS_INLINE bool try_enqueue_until(
T&& v,
const std::chrono::time_point<Clock, Duration>& deadline) {
return tryEnqueueUntilImpl(std::move(v), deadline);
}
/** try_enqueue_for */
template <typename Rep, typename Period>
FOLLY_ALWAYS_INLINE bool try_enqueue_for(
const T& v,
const std::chrono::duration<Rep, Period>& duration) {
return tryEnqueueForImpl(v, duration);
}
template <typename Rep, typename Period>
FOLLY_ALWAYS_INLINE bool try_enqueue_for(
T&& v,
const std::chrono::duration<Rep, Period>& duration) {
return tryEnqueueForImpl(std::move(v), duration);
}
/// Dequeue functions
/** dequeue */
FOLLY_ALWAYS_INLINE void dequeue(T& elem) {
q_.dequeue(elem);
addCredit(WeightFn()(elem));
}
/** try_dequeue */
FOLLY_ALWAYS_INLINE bool try_dequeue(T& elem) {
if (q_.try_dequeue(elem)) {
addCredit(WeightFn()(elem));
return true;
}
return false;
}
/** try_dequeue_until */
template <typename Clock, typename Duration>
FOLLY_ALWAYS_INLINE bool try_dequeue_until(
T& elem,
const std::chrono::time_point<Clock, Duration>& deadline) {
if (q_.try_dequeue_until(elem, deadline)) {
addCredit(WeightFn()(elem));
return true;
}
return false;
}
/** try_dequeue_for */
template <typename Rep, typename Period>
FOLLY_ALWAYS_INLINE bool try_dequeue_for(
T& elem,
const std::chrono::duration<Rep, Period>& duration) {
if (q_.try_dequeue_for(elem, duration)) {
addCredit(WeightFn()(elem));
return true;
}
return false;
}
/// Secondary functions
/** reset_capacity */
void reset_capacity(Weight capacity) noexcept {
Weight thresh = threshold(capacity);
capacity_.store(capacity + thresh, std::memory_order_release);
threshold_.store(thresh, std::memory_order_release);
}
/** weight */
Weight weight() const noexcept {
auto d = getDebit();
auto c = getCredit();
auto t = getTransfer();
return d > (c + t) ? d - (c + t) : 0;
}
/** size */
size_t size() const noexcept {
return q_.size();
}
/** empty */
bool empty() const noexcept {
return q_.empty();
}
private:
/// Private functions ///
// Calculation of threshold to move credits in bulk from consumers
// to producers
constexpr Weight threshold(Weight capacity) const noexcept {
return capacity / 10;
}
// Functions called frequently by producers
template <typename Arg>
FOLLY_ALWAYS_INLINE void enqueueImpl(Arg&& v) {
tryEnqueueUntilImpl(
std::forward<Arg>(v), std::chrono::steady_clock::time_point::max());
}
template <typename Arg>
FOLLY_ALWAYS_INLINE bool tryEnqueueImpl(Arg&& v) {
return tryEnqueueUntilImpl(
std::forward<Arg>(v), std::chrono::steady_clock::time_point::min());
}
template <typename Clock, typename Duration, typename Arg>
FOLLY_ALWAYS_INLINE bool tryEnqueueUntilImpl(
Arg&& v,
const std::chrono::time_point<Clock, Duration>& deadline) {
Weight weight = WeightFn()(std::forward<Arg>(v));
if (LIKELY(tryAddDebit(weight))) {
q_.enqueue(std::forward<Arg>(v));
return true;
}
return tryEnqueueUntilSlow(std::forward<Arg>(v), deadline);
}
template <typename Rep, typename Period, typename Arg>
FOLLY_ALWAYS_INLINE bool tryEnqueueForImpl(
Arg&& v,
const std::chrono::duration<Rep, Period>& duration) {
if (LIKELY(tryEnqueueImpl(std::forward<Arg>(v)))) {
return true;
}
auto deadline = std::chrono::steady_clock::now() + duration;
return tryEnqueueUntilSlow(std::forward<Arg>(v), deadline);
}
FOLLY_ALWAYS_INLINE bool tryAddDebit(Weight weight) noexcept {
Weight capacity = getCapacity();
Weight before = fetchAddDebit(weight);
if (LIKELY(before + weight <= capacity)) {
return true;
} else {
subDebit(weight);
return false;
}
}
FOLLY_ALWAYS_INLINE Weight getCapacity() const noexcept {
return capacity_.load(std::memory_order_acquire);
}
FOLLY_ALWAYS_INLINE Weight fetchAddDebit(Weight weight) noexcept {
Weight before;
if (SingleProducer) {
before = getDebit();
debit_.store(before + weight, std::memory_order_relaxed);
} else {
before = debit_.fetch_add(weight, std::memory_order_acq_rel);
}
return before;
}
FOLLY_ALWAYS_INLINE Weight getDebit() const noexcept {
return debit_.load(std::memory_order_acquire);
}
// Functions called frequently by consumers
FOLLY_ALWAYS_INLINE void addCredit(Weight weight) noexcept {
Weight before = fetchAddCredit(weight);
Weight thresh = getThreshold();
if (before + weight >= thresh && before < thresh) {
transferCredit();
}
}
FOLLY_ALWAYS_INLINE Weight fetchAddCredit(Weight weight) noexcept {
Weight before;
if (SingleConsumer) {
before = getCredit();
credit_.store(before + weight, std::memory_order_relaxed);
} else {
before = credit_.fetch_add(weight, std::memory_order_acq_rel);
}
return before;
}
FOLLY_ALWAYS_INLINE Weight getCredit() const noexcept {
return credit_.load(std::memory_order_acquire);
}
FOLLY_ALWAYS_INLINE Weight getThreshold() const noexcept {
return threshold_.load(std::memory_order_acquire);
}
/** Functions called infrequently by producers */
void subDebit(Weight weight) noexcept {
Weight before;
if (SingleProducer) {
before = getDebit();
debit_.store(before - weight, std::memory_order_relaxed);
} else {
before = debit_.fetch_sub(weight, std::memory_order_acq_rel);
}
DCHECK_GE(before, weight);
}
template <typename Clock, typename Duration, typename Arg>
bool tryEnqueueUntilSlow(
Arg&& v,
const std::chrono::time_point<Clock, Duration>& deadline) {
Weight weight = WeightFn()(std::forward<Arg>(v));
if (canEnqueue(deadline, weight)) {
q_.enqueue(std::forward<Arg>(v));
return true;
} else {
return false;
}
}
template <typename Clock, typename Duration>
bool canEnqueue(
const std::chrono::time_point<Clock, Duration>& deadline,
Weight weight) noexcept {
Weight capacity = getCapacity();
while (true) {
tryReduceDebit();
Weight debit = getDebit();
if ((debit + weight <= capacity) && tryAddDebit(weight)) {
return true;
}
if (deadline < Clock::time_point::max() && Clock::now() >= deadline) {
return false;
}
if (MayBlock) {
if (canBlock(weight, capacity)) {
detail::futexWaitUntil(&waiting_, WAITING, deadline);
}
} else {
asm_volatile_pause();
}
}
}
bool canBlock(Weight weight, Weight capacity) noexcept {
waiting_.store(WAITING, std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_seq_cst);
tryReduceDebit();
Weight debit = getDebit();
return debit + weight > capacity;
}
bool tryReduceDebit() noexcept {
Weight w = takeTransfer();
if (w > 0) {
subDebit(w);
}
return w > 0;
}
Weight takeTransfer() noexcept {
Weight w = getTransfer();
if (w > 0) {
w = transfer_.exchange(0, std::memory_order_acq_rel);
}
return w;
}
Weight getTransfer() const noexcept {
return transfer_.load(std::memory_order_acquire);
}
/** Functions called infrequently by consumers */
void transferCredit() noexcept {
Weight credit = takeCredit();
transfer_.fetch_add(credit, std::memory_order_acq_rel);
if (MayBlock) {
std::atomic_thread_fence(std::memory_order_seq_cst);
waiting_.store(NOTWAITING, std::memory_order_relaxed);
detail::futexWake(&waiting_);
}
}
Weight takeCredit() noexcept {
Weight credit;
if (SingleConsumer) {
credit = credit_.load(std::memory_order_relaxed);
credit_.store(0, std::memory_order_relaxed);
} else {
credit = credit_.exchange(0, std::memory_order_acq_rel);
}
return credit;
}
}; // DynamicBoundedQueue
/// Aliases
/** DSPSCQueue */
template <
typename T,
bool MayBlock,
size_t LgSegmentSize = 8,
size_t LgAlign = 7,
typename WeightFn = DefaultWeightFn<T>,
template <typename> class Atom = std::atomic>
using DSPSCQueue = DynamicBoundedQueue<
T,
true,
true,
MayBlock,
LgSegmentSize,
LgAlign,
WeightFn,
Atom>;
/** DMPSCQueue */
template <
typename T,
bool MayBlock,
size_t LgSegmentSize = 8,
size_t LgAlign = 7,
typename WeightFn = DefaultWeightFn<T>,
template <typename> class Atom = std::atomic>
using DMPSCQueue = DynamicBoundedQueue<
T,
false,
true,
MayBlock,
LgSegmentSize,
LgAlign,
WeightFn,
Atom>;
/** DSPMCQueue */
template <
typename T,
bool MayBlock,
size_t LgSegmentSize = 8,
size_t LgAlign = 7,
typename WeightFn = DefaultWeightFn<T>,
template <typename> class Atom = std::atomic>
using DSPMCQueue = DynamicBoundedQueue<
T,
true,
false,
MayBlock,
LgSegmentSize,
LgAlign,
WeightFn,
Atom>;
/** DMPMCQueue */
template <
typename T,
bool MayBlock,
size_t LgSegmentSize = 8,
size_t LgAlign = 7,
typename WeightFn = DefaultWeightFn<T>,
template <typename> class Atom = std::atomic>
using DMPMCQueue = DynamicBoundedQueue<
T,
false,
false,
MayBlock,
LgSegmentSize,
LgAlign,
WeightFn,
Atom>;
} // namespace folly