verdnatura-chat/ios/Pods/Flipper-RSocket/yarpl/flowable/FlowableOperator.h

1011 lines
30 KiB
C++

// Copyright (c) Facebook, Inc. and its affiliates.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cassert>
#include <mutex>
#include <utility>
#include "yarpl/flowable/Flowable.h"
#include "yarpl/flowable/Subscriber.h"
#include "yarpl/flowable/Subscription.h"
#include "yarpl/utils/credits.h"
#include <boost/intrusive/list.hpp>
#include <folly/Executor.h>
#include <folly/Synchronized.h>
#include <folly/functional/Invoke.h>
#include <folly/io/async/EventBase.h>
namespace yarpl {
namespace flowable {
/**
* Base (helper) class for operators. Operators are templated on two types: D
* (downstream) and U (upstream). Operators are created by method calls on an
* upstream Flowable, and are Flowables themselves. Multi-stage pipelines can
* be built: a Flowable heading a sequence of Operators.
*/
template <typename U, typename D>
class FlowableOperator : public Flowable<D> {
protected:
/// An Operator's subscription.
///
/// When a pipeline chain is active, each Flowable has a corresponding
/// subscription. Except for the first one, the subscriptions are created
/// against Operators. Each operator subscription has two functions: as a
/// subscriber for the previous stage; as a subscription for the next one, the
/// user-supplied subscriber being the last of the pipeline stages.
class Subscription : public yarpl::flowable::Subscription,
public BaseSubscriber<U> {
protected:
explicit Subscription(std::shared_ptr<Subscriber<D>> subscriber)
: subscriber_(std::move(subscriber)) {
CHECK(yarpl::atomic_load(&subscriber_));
}
// Subscriber will be provided by the init(Subscriber) call
Subscription() {}
virtual void init(std::shared_ptr<Subscriber<D>> subscriber) {
if (yarpl::atomic_load(&subscriber_)) {
subscriber->onSubscribe(yarpl::flowable::Subscription::create());
subscriber->onError(std::runtime_error("already initialized"));
return;
}
subscriber_ = std::move(subscriber);
}
void subscriberOnNext(D value) {
if (auto subscriber = yarpl::atomic_load(&subscriber_)) {
subscriber->onNext(std::move(value));
}
}
/// Terminates both ends of an operator normally.
void terminate() {
std::shared_ptr<Subscriber<D>> null;
auto subscriber = yarpl::atomic_exchange(&subscriber_, null);
BaseSubscriber<U>::cancel();
if (subscriber) {
subscriber->onComplete();
}
}
/// Terminates both ends of an operator with an error.
void terminateErr(folly::exception_wrapper ew) {
std::shared_ptr<Subscriber<D>> null;
auto subscriber = yarpl::atomic_exchange(&subscriber_, null);
BaseSubscriber<U>::cancel();
if (subscriber) {
subscriber->onError(std::move(ew));
}
}
// Subscription.
void request(int64_t n) override {
BaseSubscriber<U>::request(n);
}
void cancel() override {
std::shared_ptr<Subscriber<D>> null;
auto subscriber = yarpl::atomic_exchange(&subscriber_, null);
BaseSubscriber<U>::cancel();
}
// Subscriber.
void onSubscribeImpl() override {
yarpl::atomic_load(&subscriber_)->onSubscribe(this->ref_from_this(this));
}
void onCompleteImpl() override {
std::shared_ptr<Subscriber<D>> null;
if (auto subscriber = yarpl::atomic_exchange(&subscriber_, null)) {
subscriber->onComplete();
}
}
void onErrorImpl(folly::exception_wrapper ew) override {
std::shared_ptr<Subscriber<D>> null;
if (auto subscriber = yarpl::atomic_exchange(&subscriber_, null)) {
subscriber->onError(std::move(ew));
}
}
private:
/// This subscription controls the life-cycle of the subscriber. The
/// subscriber is retained as long as calls on it can be made. (Note: the
/// subscriber in turn maintains a reference on this subscription object
/// until cancellation and/or completion.)
AtomicReference<Subscriber<D>> subscriber_;
};
};
template <typename U, typename D, typename F, typename EF>
class MapOperator : public FlowableOperator<U, D> {
using Super = FlowableOperator<U, D>;
static_assert(std::is_same<std::decay_t<F>, F>::value, "undecayed");
static_assert(folly::is_invocable_r<D, F, U>::value, "not invocable");
static_assert(
folly::is_invocable_r<
folly::exception_wrapper,
EF,
folly::exception_wrapper&&>::value,
"exception handler not invocable");
public:
template <typename Func, typename ErrorFunc>
MapOperator(
std::shared_ptr<Flowable<U>> upstream,
Func&& function,
ErrorFunc&& errFunction)
: upstream_(std::move(upstream)),
function_(std::forward<Func>(function)),
errFunction_(std::move(errFunction)) {}
void subscribe(std::shared_ptr<Subscriber<D>> subscriber) override {
upstream_->subscribe(std::make_shared<Subscription>(
this->ref_from_this(this), std::move(subscriber)));
}
private:
using SuperSubscription = typename Super::Subscription;
class Subscription : public SuperSubscription {
public:
Subscription(
std::shared_ptr<MapOperator> flowable,
std::shared_ptr<Subscriber<D>> subscriber)
: SuperSubscription(std::move(subscriber)),
flowable_(std::move(flowable)) {}
void onNextImpl(U value) override {
try {
if (auto flowable = yarpl::atomic_load(&flowable_)) {
this->subscriberOnNext(flowable->function_(std::move(value)));
}
} catch (const std::exception& exn) {
folly::exception_wrapper ew{std::current_exception(), exn};
this->terminateErr(std::move(ew));
}
}
void onErrorImpl(folly::exception_wrapper ew) override {
try {
if (auto flowable = yarpl::atomic_load(&flowable_)) {
SuperSubscription::onErrorImpl(flowable->errFunction_(std::move(ew)));
}
} catch (const std::exception& exn) {
this->terminateErr(
folly::exception_wrapper{std::current_exception(), exn});
}
}
void onTerminateImpl() override {
yarpl::atomic_exchange(&flowable_, nullptr);
SuperSubscription::onTerminateImpl();
}
private:
AtomicReference<MapOperator> flowable_;
};
std::shared_ptr<Flowable<U>> upstream_;
F function_;
EF errFunction_;
};
template <typename U, typename F>
class FilterOperator : public FlowableOperator<U, U> {
// for use in subclasses
using Super = FlowableOperator<U, U>;
static_assert(std::is_same<std::decay_t<F>, F>::value, "undecayed");
static_assert(folly::is_invocable_r<bool, F, U>::value, "not invocable");
public:
template <typename Func>
FilterOperator(std::shared_ptr<Flowable<U>> upstream, Func&& function)
: upstream_(std::move(upstream)),
function_(std::forward<Func>(function)) {}
void subscribe(std::shared_ptr<Subscriber<U>> subscriber) override {
upstream_->subscribe(std::make_shared<Subscription>(
this->ref_from_this(this), std::move(subscriber)));
}
private:
using SuperSubscription = typename Super::Subscription;
class Subscription : public SuperSubscription {
public:
Subscription(
std::shared_ptr<FilterOperator> flowable,
std::shared_ptr<Subscriber<U>> subscriber)
: SuperSubscription(std::move(subscriber)),
flowable_(std::move(flowable)) {}
void onNextImpl(U value) override {
if (auto flowable = yarpl::atomic_load(&flowable_)) {
if (flowable->function_(value)) {
SuperSubscription::subscriberOnNext(std::move(value));
} else {
SuperSubscription::request(1);
}
}
}
void onTerminateImpl() override {
yarpl::atomic_exchange(&flowable_, nullptr);
SuperSubscription::onTerminateImpl();
}
private:
AtomicReference<FilterOperator> flowable_;
};
std::shared_ptr<Flowable<U>> upstream_;
F function_;
};
template <typename U, typename D, typename F>
class ReduceOperator : public FlowableOperator<U, D> {
using Super = FlowableOperator<U, D>;
static_assert(std::is_same<std::decay_t<F>, F>::value, "undecayed");
static_assert(std::is_assignable<D&, U>::value, "not assignable");
static_assert(folly::is_invocable_r<D, F, D, U>::value, "not invocable");
public:
template <typename Func>
ReduceOperator(std::shared_ptr<Flowable<U>> upstream, Func&& function)
: upstream_(std::move(upstream)),
function_(std::forward<Func>(function)) {}
void subscribe(std::shared_ptr<Subscriber<D>> subscriber) override {
upstream_->subscribe(std::make_shared<Subscription>(
this->ref_from_this(this), std::move(subscriber)));
}
private:
using SuperSubscription = typename Super::Subscription;
class Subscription : public SuperSubscription {
public:
Subscription(
std::shared_ptr<ReduceOperator> flowable,
std::shared_ptr<Subscriber<D>> subscriber)
: SuperSubscription(std::move(subscriber)),
flowable_(std::move(flowable)),
accInitialized_(false) {}
void request(int64_t) override {
// Request all of the items.
SuperSubscription::request(credits::kNoFlowControl);
}
void onNextImpl(U value) override {
if (accInitialized_) {
if (auto flowable = yarpl::atomic_load(&flowable_)) {
acc_ = flowable->function_(std::move(acc_), std::move(value));
}
} else {
acc_ = std::move(value);
accInitialized_ = true;
}
}
void onCompleteImpl() override {
if (accInitialized_) {
SuperSubscription::subscriberOnNext(std::move(acc_));
}
SuperSubscription::onCompleteImpl();
}
void onTerminateImpl() override {
yarpl::atomic_exchange(&flowable_, nullptr);
SuperSubscription::onTerminateImpl();
}
private:
AtomicReference<ReduceOperator> flowable_;
bool accInitialized_;
D acc_;
};
std::shared_ptr<Flowable<U>> upstream_;
F function_;
};
template <typename T>
class TakeOperator : public FlowableOperator<T, T> {
using Super = FlowableOperator<T, T>;
public:
TakeOperator(std::shared_ptr<Flowable<T>> upstream, int64_t limit)
: upstream_(std::move(upstream)), limit_(limit) {}
void subscribe(std::shared_ptr<Subscriber<T>> subscriber) override {
upstream_->subscribe(
std::make_shared<Subscription>(limit_, std::move(subscriber)));
}
private:
using SuperSubscription = typename Super::Subscription;
class Subscription : public SuperSubscription {
public:
Subscription(int64_t limit, std::shared_ptr<Subscriber<T>> subscriber)
: SuperSubscription(std::move(subscriber)), limit_(limit) {}
void onSubscribeImpl() override {
SuperSubscription::onSubscribeImpl();
if (limit_ <= 0) {
SuperSubscription::terminate();
}
}
void onNextImpl(T value) override {
if (limit_-- > 0) {
if (pending_ > 0) {
--pending_;
}
SuperSubscription::subscriberOnNext(std::move(value));
if (limit_ == 0) {
SuperSubscription::terminate();
}
}
}
void request(int64_t delta) override {
delta = std::min(delta, limit_ - pending_);
if (delta > 0) {
pending_ += delta;
SuperSubscription::request(delta);
}
}
private:
int64_t pending_{0};
int64_t limit_;
};
std::shared_ptr<Flowable<T>> upstream_;
const int64_t limit_;
};
template <typename T>
class SkipOperator : public FlowableOperator<T, T> {
using Super = FlowableOperator<T, T>;
public:
SkipOperator(std::shared_ptr<Flowable<T>> upstream, int64_t offset)
: upstream_(std::move(upstream)), offset_(offset) {}
void subscribe(std::shared_ptr<Subscriber<T>> subscriber) override {
upstream_->subscribe(
std::make_shared<Subscription>(offset_, std::move(subscriber)));
}
private:
using SuperSubscription = typename Super::Subscription;
class Subscription : public SuperSubscription {
public:
Subscription(int64_t offset, std::shared_ptr<Subscriber<T>> subscriber)
: SuperSubscription(std::move(subscriber)), offset_(offset) {}
void onNextImpl(T value) override {
if (offset_ > 0) {
--offset_;
} else {
SuperSubscription::subscriberOnNext(std::move(value));
}
}
void request(int64_t delta) override {
if (firstRequest_) {
firstRequest_ = false;
delta = credits::add(delta, offset_);
}
SuperSubscription::request(delta);
}
private:
int64_t offset_;
bool firstRequest_{true};
};
std::shared_ptr<Flowable<T>> upstream_;
const int64_t offset_;
};
template <typename T>
class IgnoreElementsOperator : public FlowableOperator<T, T> {
using Super = FlowableOperator<T, T>;
public:
explicit IgnoreElementsOperator(std::shared_ptr<Flowable<T>> upstream)
: upstream_(std::move(upstream)) {}
void subscribe(std::shared_ptr<Subscriber<T>> subscriber) override {
upstream_->subscribe(std::make_shared<Subscription>(std::move(subscriber)));
}
private:
using SuperSubscription = typename Super::Subscription;
class Subscription : public SuperSubscription {
public:
Subscription(std::shared_ptr<Subscriber<T>> subscriber)
: SuperSubscription(std::move(subscriber)) {}
void onNextImpl(T) override {}
};
std::shared_ptr<Flowable<T>> upstream_;
};
template <typename T>
class SubscribeOnOperator : public FlowableOperator<T, T> {
using Super = FlowableOperator<T, T>;
public:
SubscribeOnOperator(
std::shared_ptr<Flowable<T>> upstream,
folly::Executor& executor)
: upstream_(std::move(upstream)), executor_(executor) {}
void subscribe(std::shared_ptr<Subscriber<T>> subscriber) override {
executor_.add([this, self = this->ref_from_this(this), subscriber] {
upstream_->subscribe(
std::make_shared<Subscription>(executor_, std::move(subscriber)));
});
}
private:
using SuperSubscription = typename Super::Subscription;
class Subscription : public SuperSubscription {
public:
Subscription(
folly::Executor& executor,
std::shared_ptr<Subscriber<T>> subscriber)
: SuperSubscription(std::move(subscriber)), executor_(executor) {}
void request(int64_t delta) override {
executor_.add([delta, this, self = this->ref_from_this(this)] {
this->callSuperRequest(delta);
});
}
void cancel() override {
executor_.add([this, self = this->ref_from_this(this)] {
this->callSuperCancel();
});
}
void onNextImpl(T value) override {
SuperSubscription::subscriberOnNext(std::move(value));
}
private:
// Trampoline to call superclass method; gcc bug 58972.
void callSuperRequest(int64_t delta) {
SuperSubscription::request(delta);
}
// Trampoline to call superclass method; gcc bug 58972.
void callSuperCancel() {
SuperSubscription::cancel();
}
folly::Executor& executor_;
};
std::shared_ptr<Flowable<T>> upstream_;
folly::Executor& executor_;
};
template <typename T, typename OnSubscribe>
class FromPublisherOperator : public Flowable<T> {
static_assert(
std::is_same<std::decay_t<OnSubscribe>, OnSubscribe>::value,
"undecayed");
public:
template <typename F>
explicit FromPublisherOperator(F&& function)
: function_(std::forward<F>(function)) {}
void subscribe(std::shared_ptr<Subscriber<T>> subscriber) override {
function_(std::move(subscriber));
}
private:
OnSubscribe function_;
};
template <typename T, typename R>
class FlatMapOperator : public FlowableOperator<T, R> {
using Super = FlowableOperator<T, R>;
public:
FlatMapOperator(
std::shared_ptr<Flowable<T>> upstream,
folly::Function<std::shared_ptr<Flowable<R>>(T)> func)
: upstream_(std::move(upstream)), function_(std::move(func)) {}
void subscribe(std::shared_ptr<Subscriber<R>> subscriber) override {
upstream_->subscribe(std::make_shared<FMSubscription>(
this->ref_from_this(this), std::move(subscriber)));
}
private:
using SuperSubscription = typename Super::Subscription;
class FMSubscription : public SuperSubscription {
struct MappedStreamSubscriber;
public:
FMSubscription(
std::shared_ptr<FlatMapOperator> flowable,
std::shared_ptr<Subscriber<R>> subscriber)
: SuperSubscription(std::move(subscriber)),
flowable_(std::move(flowable)) {}
void onSubscribeImpl() final {
liveSubscribers_++;
SuperSubscription::onSubscribeImpl();
}
void onNextImpl(T value) final {
std::shared_ptr<Flowable<R>> mappedStream;
try {
mappedStream = flowable_->function_(std::move(value));
} catch (const std::exception& exn) {
folly::exception_wrapper ew{std::current_exception(), exn};
{
std::lock_guard<std::mutex> g(onErrorExGuard_);
onErrorEx_ = ew;
}
// next iteration of drainLoop will cancel this subscriber as well
drainLoop();
return;
}
std::shared_ptr<MappedStreamSubscriber> mappedSubscriber =
std::make_shared<MappedStreamSubscriber>(this->ref_from_this(this));
mappedSubscriber->fmReference_ = mappedSubscriber;
{
// put into pendingValue queue because once the mappedSubscriber
// is subscribed to, it will request elements. We don't want the
// drainLoop to execute while it's on withoutValue, and request
// a second element before the first arrives.
auto l = lists.wlock();
CHECK(!mappedSubscriber->is_linked());
l->pendingValue.push_back(*mappedSubscriber.get());
}
liveSubscribers_++;
mappedStream->subscribe(mappedSubscriber);
drainLoop();
}
void drainImpl() {
// phase 1: clear out terminated subscribers
{
auto clearList = [](auto& list, SubscriberList& t) {
while (!list.empty()) {
auto& elem = list.front();
auto r = elem.sync.wlock();
r->freeze = true;
elem.unlink();
t.push_back(elem);
}
};
SubscriberList clearTrash;
if (clearAllSubscribers_.load()) {
auto l = lists.wlock();
clearList(l->withValue, clearTrash);
clearList(l->withoutValue, clearTrash);
clearList(l->pendingValue, clearTrash);
}
// clear elements while no locks are held
while (!clearTrash.empty()) {
auto& elem = clearTrash.front();
elem.unlink();
elem.cancel();
elem.fmReference_ = nullptr;
}
}
// phase 2: check if the subscriber should terminate due to error
// or all subscribers completing
if (!calledDownstreamTerminate_) {
folly::exception_wrapper ex;
{
std::lock_guard<std::mutex> exg(onErrorExGuard_);
ex = std::move(onErrorEx_);
}
if (ex) {
calledDownstreamTerminate_ = true;
cancel();
this->terminateErr(std::move(ex));
} else if (liveSubscribers_ == 0) {
calledDownstreamTerminate_ = true;
this->terminate();
}
}
// phase 3: if the downstream has requested elements, pop values out of
// subscribers which have received a value and call downstream->onNext
while (requested_ != 0) {
R val;
{
auto l = lists.wlock();
if (l->withValue.empty()) {
break;
}
requested_--;
auto& elem = l->withValue.front();
elem.unlink();
{
auto r = elem.sync.wlock();
CHECK(r->hasValue);
r->hasValue = false;
val = std::move(r->value);
l->withoutValue.push_back(elem);
}
}
SuperSubscription::subscriberOnNext(std::move(val));
}
// phase 4: ask any upstream flowables which don't have pending
// requests for their next element kick off any more requests.
// Put subscribers which have terminated into the trash.
{
SubscriberList terminatedTrash;
while (true) {
MappedStreamSubscriber* elem;
{
auto l = lists.wlock();
if (l->withoutValue.empty()) {
break;
}
elem = &l->withoutValue.front();
auto r = elem->sync.wlock();
CHECK(!r->hasValue) << "failed for elem=" << elem; // sanity
elem->unlink();
// Subscribers might call onNext and then terminate; delay
// removing its liveSubscriber reference until we've delivered
// its element to the downstream subscriber and dropped its
// synchronized reference to `r`, as dropping the
// flatMapSubscription_ reference may invoke its destructor
if (r->isTerminated) {
r->freeze = true;
terminatedTrash.push_back(*elem);
continue; // skips the next elem->request(1)
}
// else, the stream hasn't terminated, request another
// element
l->pendingValue.push_back(*elem);
}
elem->request(1);
}
// phase 5: destroy any mapped subscribers which have terminated,
// enqueue another drain loop run if we do end up discarding any
// subscribers, as our live subscriber count may have gone to zero
if (!terminatedTrash.empty()) {
drainLoopMutex_++;
}
while (!terminatedTrash.empty()) {
auto& elem = terminatedTrash.front();
CHECK(elem.sync.wlock()->isTerminated);
elem.unlink();
elem.fmReference_ = nullptr;
liveSubscribers_--;
}
}
}
// called from MappedStreamSubscriber, receives the R and the
// subscriber which generated the R
void drainLoop() {
auto self = this->ref_from_this(this);
if (drainLoopMutex_++ == 0) {
do {
drainImpl();
} while (drainLoopMutex_-- != 1);
}
}
void onMappedSubscriberNext(MappedStreamSubscriber* elem, R value) {
{
// `elem` may not be in a list, as it may have been canceled. Push it
// on the withValue list and let drainLoop clear it if that's the case.
auto l = lists.wlock();
auto r = elem->sync.wlock();
if (r->freeze) {
return;
}
CHECK(!r->hasValue) << "failed for elem=" << elem;
r->hasValue = true;
r->value = std::move(value);
elem->unlink();
l->withValue.push_back(*elem);
}
drainLoop();
}
void onMappedSubscriberTerminate(MappedStreamSubscriber* elem) {
{
auto r = elem->sync.wlock();
r->isTerminated = true;
if (r->onErrorEx) {
std::lock_guard<std::mutex> exg(onErrorExGuard_);
onErrorEx_ = std::move(r->onErrorEx);
}
if (r->freeze) {
return;
}
}
{
auto l = lists.wlock();
auto r = elem->sync.wlock();
if (r->freeze) {
return;
}
CHECK(elem->is_linked());
elem->unlink();
if (r->hasValue) {
l->withValue.push_back(*elem);
} else {
liveSubscribers_--;
elem->fmReference_ = nullptr;
}
}
drainLoop();
}
// onComplete/onError fall through to onTerminateImpl, which
// will call drainLoop and update the liveSubscribers_ count
void onCompleteImpl() final {}
void onErrorImpl(folly::exception_wrapper ex) final {
std::lock_guard<std::mutex> g(onErrorExGuard_);
onErrorEx_ = std::move(ex);
clearAllSubscribers_.store(true);
}
void onTerminateImpl() final {
liveSubscribers_--;
drainLoop();
flowable_.reset();
}
void request(int64_t n) override {
if ((n + requested_) < requested_) {
requested_ = std::numeric_limits<int64_t>::max();
} else {
requested_ += n;
}
if (n > 0) {
// TODO: make max parallelism configurable a-la RxJava 2.x's
// FlowableFlatMapOperator
SuperSubscription::request(std::numeric_limits<int64_t>::max());
}
drainLoop();
}
void cancel() override {
clearAllSubscribers_.store(true);
drainLoop();
}
private:
// buffers at most a single element of type R
struct MappedStreamSubscriber
: public BaseSubscriber<R>,
public boost::intrusive::list_base_hook<
boost::intrusive::link_mode<boost::intrusive::auto_unlink>> {
MappedStreamSubscriber(std::shared_ptr<FMSubscription> subscription)
: flatMapSubscription_(std::move(subscription)) {}
void onSubscribeImpl() final {
auto fmsb = yarpl::atomic_load(&flatMapSubscription_);
if (!fmsb || fmsb->clearAllSubscribers_) {
BaseSubscriber<R>::cancel();
return;
}
#ifndef NDEBUG
if (auto fms = yarpl::atomic_load(&flatMapSubscription_)) {
auto l = fms->lists.wlock();
auto r = sync.wlock();
if (!is_in_list(*this, l->pendingValue, l)) {
LOG(INFO) << "failed: this=" << this;
LOG(INFO) << "in list: ";
debug_is_in_list(*this, l);
DCHECK(r->freeze);
} else {
}
DCHECK(!r->hasValue);
}
#endif
BaseSubscriber<R>::request(1);
}
void onNextImpl(R value) final {
if (auto fms = yarpl::atomic_load(&flatMapSubscription_)) {
fms->onMappedSubscriberNext(this, std::move(value));
}
}
// noop
void onCompleteImpl() final {}
void onErrorImpl(folly::exception_wrapper ex) final {
auto r = sync.wlock();
r->onErrorEx = std::move(ex);
}
void onTerminateImpl() override {
std::shared_ptr<FMSubscription> null;
if (auto fms = yarpl::atomic_exchange(&flatMapSubscription_, null)) {
fms->onMappedSubscriberTerminate(this);
}
}
struct SyncData {
R value;
bool hasValue{false};
bool isTerminated{false};
bool freeze{false};
folly::exception_wrapper onErrorEx{nullptr};
};
folly::Synchronized<SyncData> sync;
// FMSubscription's 'reference' to this object. FMSubscription
// clears this reference when it drops the MappedStreamSubscriber
// from one of its atomic lists
std::shared_ptr<MappedStreamSubscriber> fmReference_{nullptr};
// this is both a Subscriber and a Subscription<T>
AtomicReference<FMSubscription> flatMapSubscription_{nullptr};
};
// used to make sure only one thread at a time is calling subscriberOnNext
std::atomic<int64_t> drainLoopMutex_{0};
using SubscriberList = boost::intrusive::list<
MappedStreamSubscriber,
boost::intrusive::constant_time_size<false>>;
struct Lists {
// subscribers with a ready R
SubscriberList withValue{};
// subscribers that have requested 1 R, waiting for it to arrive via
// onNext
SubscriberList pendingValue{};
// idle subscribers
SubscriberList withoutValue{};
};
folly::Synchronized<Lists> lists;
template <typename L>
static bool is_in_list(
MappedStreamSubscriber const& elem,
SubscriberList const& list,
L const& lists) {
return in_list_impl(elem, list, lists, true);
}
template <typename L>
static bool not_in_list(
MappedStreamSubscriber const& elem,
SubscriberList const& list,
L const& lists) {
return in_list_impl(elem, list, lists, false);
}
template <typename L>
static bool in_list_impl(
MappedStreamSubscriber const& elem,
SubscriberList const& list,
L const& lists,
bool should) {
if (is_in_list(elem, list) != should) {
#ifndef NDEBUG
debug_is_in_list(elem, lists);
#else
(void)lists;
#endif
return false;
}
return true;
}
template <typename L>
static void debug_is_in_list(
MappedStreamSubscriber const& elem,
L const& lists) {
LOG(INFO) << "in without: " << is_in_list(elem, lists->withoutValue);
LOG(INFO) << "in pending: " << is_in_list(elem, lists->pendingValue);
LOG(INFO) << "in withval: " << is_in_list(elem, lists->withValue);
}
static bool is_in_list(
MappedStreamSubscriber const& elem,
SubscriberList const& list) {
bool found = false;
for (auto& e : list) {
if (&e == &elem) {
found = true;
break;
}
}
return found;
}
std::shared_ptr<FlatMapOperator> flowable_;
// got a terminating signal from the upstream flowable
// always modified in the protected drainImpl()
bool calledDownstreamTerminate_{false};
std::mutex onErrorExGuard_;
folly::exception_wrapper onErrorEx_{nullptr};
// clear all lists of
std::atomic<bool> clearAllSubscribers_{false};
std::atomic<int64_t> requested_{0};
// number of subscribers (FMSubscription + MappedStreamSubscriber) which
// have not received a terminating signal yet
std::atomic<int64_t> liveSubscribers_{0};
};
std::shared_ptr<Flowable<T>> upstream_;
folly::Function<std::shared_ptr<Flowable<R>>(T)> function_;
};
} // namespace flowable
} // namespace yarpl
#include "yarpl/flowable/FlowableConcatOperators.h"
#include "yarpl/flowable/FlowableDoOperator.h"
#include "yarpl/flowable/FlowableObserveOnOperator.h"
#include "yarpl/flowable/FlowableTimeoutOperator.h"