verdnatura-chat/ios/Pods/boost-for-react-native/boost/archive/detail/iserializer.hpp

625 lines
21 KiB
C++

#ifndef BOOST_ARCHIVE_DETAIL_ISERIALIZER_HPP
#define BOOST_ARCHIVE_DETAIL_ISERIALIZER_HPP
// MS compatible compilers support #pragma once
#if defined(_MSC_VER)
# pragma once
#pragma inline_depth(511)
#pragma inline_recursion(on)
#endif
#if defined(__MWERKS__)
#pragma inline_depth(511)
#endif
/////////1/////////2/////////3/////////4/////////5/////////6/////////7/////////8
// iserializer.hpp: interface for serialization system.
// (C) Copyright 2002 Robert Ramey - http://www.rrsd.com .
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for updates, documentation, and revision history.
#include <new> // for placement new
#include <cstddef> // size_t, NULL
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#if defined(BOOST_NO_STDC_NAMESPACE)
namespace std{
using ::size_t;
} // namespace std
#endif
#include <boost/static_assert.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/mpl/greater_equal.hpp>
#include <boost/mpl/equal_to.hpp>
#include <boost/core/no_exceptions_support.hpp>
#ifndef BOOST_SERIALIZATION_DEFAULT_TYPE_INFO
#include <boost/serialization/extended_type_info_typeid.hpp>
#endif
#include <boost/serialization/throw_exception.hpp>
#include <boost/serialization/smart_cast.hpp>
#include <boost/serialization/static_warning.hpp>
#include <boost/type_traits/is_pointer.hpp>
#include <boost/type_traits/is_enum.hpp>
#include <boost/type_traits/is_const.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/type_traits/remove_extent.hpp>
#include <boost/type_traits/is_polymorphic.hpp>
#include <boost/serialization/assume_abstract.hpp>
#ifndef BOOST_MSVC
#define DONT_USE_HAS_NEW_OPERATOR ( \
BOOST_WORKAROUND(__IBMCPP__, < 1210) \
|| defined(__SUNPRO_CC) && (__SUNPRO_CC < 0x590) \
)
#else
#define DONT_USE_HAS_NEW_OPERATOR 0
#endif
#if ! DONT_USE_HAS_NEW_OPERATOR
#include <boost/type_traits/has_new_operator.hpp>
#endif
#include <boost/serialization/serialization.hpp>
#include <boost/serialization/version.hpp>
#include <boost/serialization/level.hpp>
#include <boost/serialization/tracking.hpp>
#include <boost/serialization/type_info_implementation.hpp>
#include <boost/serialization/nvp.hpp>
#include <boost/serialization/void_cast.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/collection_size_type.hpp>
#include <boost/serialization/singleton.hpp>
#include <boost/serialization/wrapper.hpp>
// the following is need only for dynamic cast of polymorphic pointers
#include <boost/archive/archive_exception.hpp>
#include <boost/archive/detail/basic_iarchive.hpp>
#include <boost/archive/detail/basic_iserializer.hpp>
#include <boost/archive/detail/basic_pointer_iserializer.hpp>
#include <boost/archive/detail/archive_serializer_map.hpp>
#include <boost/archive/detail/check.hpp>
namespace boost {
namespace serialization {
class extended_type_info;
} // namespace serialization
namespace archive {
// an accessor to permit friend access to archives. Needed because
// some compilers don't handle friend templates completely
class load_access {
public:
template<class Archive, class T>
static void load_primitive(Archive &ar, T &t){
ar.load(t);
}
};
namespace detail {
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable : 4511 4512)
#endif
template<class Archive, class T>
class iserializer : public basic_iserializer
{
private:
virtual void destroy(/*const*/ void *address) const {
boost::serialization::access::destroy(static_cast<T *>(address));
}
protected:
// protected constructor since it's always created by singleton
explicit iserializer() :
basic_iserializer(
boost::serialization::singleton<
typename
boost::serialization::type_info_implementation< T >::type
>::get_const_instance()
)
{}
public:
virtual BOOST_DLLEXPORT void load_object_data(
basic_iarchive & ar,
void *x,
const unsigned int file_version
) const BOOST_USED;
virtual bool class_info() const {
return boost::serialization::implementation_level< T >::value
>= boost::serialization::object_class_info;
}
virtual bool tracking(const unsigned int /* flags */) const {
return boost::serialization::tracking_level< T >::value
== boost::serialization::track_always
|| ( boost::serialization::tracking_level< T >::value
== boost::serialization::track_selectively
&& serialized_as_pointer());
}
virtual version_type version() const {
return version_type(::boost::serialization::version< T >::value);
}
virtual bool is_polymorphic() const {
return boost::is_polymorphic< T >::value;
}
virtual ~iserializer(){};
};
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
template<class Archive, class T>
BOOST_DLLEXPORT void iserializer<Archive, T>::load_object_data(
basic_iarchive & ar,
void *x,
const unsigned int file_version
) const {
// note: we now comment this out. Before we permited archive
// version # to be very large. Now we don't. To permit
// readers of these old archives, we have to suppress this
// code. Perhaps in the future we might re-enable it but
// permit its suppression with a runtime switch.
#if 0
// trap case where the program cannot handle the current version
if(file_version > static_cast<const unsigned int>(version()))
boost::serialization::throw_exception(
archive::archive_exception(
boost::archive::archive_exception::unsupported_class_version,
get_debug_info()
)
);
#endif
// make sure call is routed through the higest interface that might
// be specialized by the user.
boost::serialization::serialize_adl(
boost::serialization::smart_cast_reference<Archive &>(ar),
* static_cast<T *>(x),
file_version
);
}
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable : 4511 4512)
#endif
// the purpose of this code is to allocate memory for an object
// without requiring the constructor to be called. Presumably
// the allocated object will be subsequently initialized with
// "placement new".
// note: we have the boost type trait has_new_operator but we
// have no corresponding has_delete_operator. So we presume
// that the former being true would imply that the a delete
// operator is also defined for the class T.
template<class T>
struct heap_allocation {
// boost::has_new_operator< T > doesn't work on these compilers
#if DONT_USE_HAS_NEW_OPERATOR
// This doesn't handle operator new overload for class T
static T * invoke_new(){
return static_cast<T *>(operator new(sizeof(T)));
}
static void invoke_delete(T *t){
(operator delete(t));
}
#else
// note: we presume that a true value for has_new_operator
// implies the existence of a class specific delete operator as well
// as a class specific new operator.
struct has_new_operator {
static T * invoke_new() {
return static_cast<T *>((T::operator new)(sizeof(T)));
}
static void invoke_delete(T * t) {
// if compilation fails here, the likely cause that the class
// T has a class specific new operator but no class specific
// delete operator which matches the following signature.
// note that this solution addresses the issue that two
// possible signatures. But it doesn't address the possibility
// that the class might have class specific new with NO
// class specific delete at all. Patches (compatible with
// C++03) welcome!
delete t;
}
};
struct doesnt_have_new_operator {
static T* invoke_new() {
return static_cast<T *>(operator new(sizeof(T)));
}
static void invoke_delete(T * t) {
// Note: I'm reliance upon automatic conversion from T * to void * here
delete t;
}
};
static T * invoke_new() {
typedef typename
mpl::eval_if<
boost::has_new_operator< T >,
mpl::identity<has_new_operator >,
mpl::identity<doesnt_have_new_operator >
>::type typex;
return typex::invoke_new();
}
static void invoke_delete(T *t) {
typedef typename
mpl::eval_if<
boost::has_new_operator< T >,
mpl::identity<has_new_operator >,
mpl::identity<doesnt_have_new_operator >
>::type typex;
typex::invoke_delete(t);
}
#endif
explicit heap_allocation(){
m_p = invoke_new();
}
~heap_allocation(){
if (0 != m_p)
invoke_delete(m_p);
}
T* get() const {
return m_p;
}
T* release() {
T* p = m_p;
m_p = 0;
return p;
}
private:
T* m_p;
};
template<class Archive, class T>
class pointer_iserializer :
public basic_pointer_iserializer
{
private:
virtual void * heap_allocation() const {
detail::heap_allocation<T> h;
T * t = h.get();
h.release();
return t;
}
virtual const basic_iserializer & get_basic_serializer() const {
return boost::serialization::singleton<
iserializer<Archive, T>
>::get_const_instance();
}
BOOST_DLLEXPORT virtual void load_object_ptr(
basic_iarchive & ar,
void * x,
const unsigned int file_version
) const BOOST_USED;
protected:
// this should alway be a singleton so make the constructor protected
pointer_iserializer();
~pointer_iserializer();
};
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
// note: BOOST_DLLEXPORT is so that code for polymorphic class
// serialized only through base class won't get optimized out
template<class Archive, class T>
BOOST_DLLEXPORT void pointer_iserializer<Archive, T>::load_object_ptr(
basic_iarchive & ar,
void * t,
const unsigned int file_version
) const
{
Archive & ar_impl =
boost::serialization::smart_cast_reference<Archive &>(ar);
// note that the above will throw std::bad_alloc if the allocation
// fails so we don't have to address this contingency here.
// catch exception during load_construct_data so that we don't
// automatically delete the t which is most likely not fully
// constructed
BOOST_TRY {
// this addresses an obscure situation that occurs when
// load_constructor de-serializes something through a pointer.
ar.next_object_pointer(t);
boost::serialization::load_construct_data_adl<Archive, T>(
ar_impl,
static_cast<T *>(t),
file_version
);
}
BOOST_CATCH(...){
// if we get here the load_construct failed. The heap_allocation
// will be automatically deleted so we don't have to do anything
// special here.
BOOST_RETHROW;
}
BOOST_CATCH_END
ar_impl >> boost::serialization::make_nvp(NULL, * static_cast<T *>(t));
}
template<class Archive, class T>
pointer_iserializer<Archive, T>::pointer_iserializer() :
basic_pointer_iserializer(
boost::serialization::singleton<
typename
boost::serialization::type_info_implementation< T >::type
>::get_const_instance()
)
{
boost::serialization::singleton<
iserializer<Archive, T>
>::get_mutable_instance().set_bpis(this);
archive_serializer_map<Archive>::insert(this);
}
template<class Archive, class T>
pointer_iserializer<Archive, T>::~pointer_iserializer(){
archive_serializer_map<Archive>::erase(this);
}
template<class Archive>
struct load_non_pointer_type {
// note this bounces the call right back to the archive
// with no runtime overhead
struct load_primitive {
template<class T>
static void invoke(Archive & ar, T & t){
load_access::load_primitive(ar, t);
}
};
// note this bounces the call right back to the archive
// with no runtime overhead
struct load_only {
template<class T>
static void invoke(Archive & ar, const T & t){
// short cut to user's serializer
// make sure call is routed through the higest interface that might
// be specialized by the user.
boost::serialization::serialize_adl(
ar,
const_cast<T &>(t),
boost::serialization::version< T >::value
);
}
};
// note this save class information including version
// and serialization level to the archive
struct load_standard {
template<class T>
static void invoke(Archive &ar, const T & t){
void * x = & const_cast<T &>(t);
ar.load_object(
x,
boost::serialization::singleton<
iserializer<Archive, T>
>::get_const_instance()
);
}
};
struct load_conditional {
template<class T>
static void invoke(Archive &ar, T &t){
//if(0 == (ar.get_flags() & no_tracking))
load_standard::invoke(ar, t);
//else
// load_only::invoke(ar, t);
}
};
template<class T>
static void invoke(Archive & ar, T &t){
typedef typename mpl::eval_if<
// if its primitive
mpl::equal_to<
boost::serialization::implementation_level< T >,
mpl::int_<boost::serialization::primitive_type>
>,
mpl::identity<load_primitive>,
// else
typename mpl::eval_if<
// class info / version
mpl::greater_equal<
boost::serialization::implementation_level< T >,
mpl::int_<boost::serialization::object_class_info>
>,
// do standard load
mpl::identity<load_standard>,
// else
typename mpl::eval_if<
// no tracking
mpl::equal_to<
boost::serialization::tracking_level< T >,
mpl::int_<boost::serialization::track_never>
>,
// do a fast load
mpl::identity<load_only>,
// else
// do a fast load only tracking is turned off
mpl::identity<load_conditional>
> > >::type typex;
check_object_versioning< T >();
check_object_level< T >();
typex::invoke(ar, t);
}
};
template<class Archive>
struct load_pointer_type {
struct abstract
{
template<class T>
static const basic_pointer_iserializer * register_type(Archive & /* ar */){
// it has? to be polymorphic
BOOST_STATIC_ASSERT(boost::is_polymorphic< T >::value);
return static_cast<basic_pointer_iserializer *>(NULL);
}
};
struct non_abstract
{
template<class T>
static const basic_pointer_iserializer * register_type(Archive & ar){
return ar.register_type(static_cast<T *>(NULL));
}
};
template<class T>
static const basic_pointer_iserializer * register_type(Archive &ar, const T & /*t*/){
// there should never be any need to load an abstract polymorphic
// class pointer. Inhibiting code generation for this
// permits abstract base classes to be used - note: exception
// virtual serialize functions used for plug-ins
typedef typename
mpl::eval_if<
boost::serialization::is_abstract<const T>,
boost::mpl::identity<abstract>,
boost::mpl::identity<non_abstract>
>::type typex;
return typex::template register_type< T >(ar);
}
template<class T>
static T * pointer_tweak(
const boost::serialization::extended_type_info & eti,
void const * const t,
const T &
) {
// tweak the pointer back to the base class
void * upcast = const_cast<void *>(
boost::serialization::void_upcast(
eti,
boost::serialization::singleton<
typename
boost::serialization::type_info_implementation< T >::type
>::get_const_instance(),
t
)
);
if(NULL == upcast)
boost::serialization::throw_exception(
archive_exception(archive_exception::unregistered_class)
);
return static_cast<T *>(upcast);
}
template<class T>
static void check_load(T & /* t */){
check_pointer_level< T >();
check_pointer_tracking< T >();
}
static const basic_pointer_iserializer *
find(const boost::serialization::extended_type_info & type){
return static_cast<const basic_pointer_iserializer *>(
archive_serializer_map<Archive>::find(type)
);
}
template<class Tptr>
static void invoke(Archive & ar, Tptr & t){
check_load(*t);
const basic_pointer_iserializer * bpis_ptr = register_type(ar, *t);
const basic_pointer_iserializer * newbpis_ptr = ar.load_pointer(
// note major hack here !!!
// I tried every way to convert Tptr &t (where Tptr might
// include const) to void * &. This is the only way
// I could make it work. RR
(void * & )t,
bpis_ptr,
find
);
// if the pointer isn't that of the base class
if(newbpis_ptr != bpis_ptr){
t = pointer_tweak(newbpis_ptr->get_eti(), t, *t);
}
}
};
template<class Archive>
struct load_enum_type {
template<class T>
static void invoke(Archive &ar, T &t){
// convert integers to correct enum to load
int i;
ar >> boost::serialization::make_nvp(NULL, i);
t = static_cast< T >(i);
}
};
template<class Archive>
struct load_array_type {
template<class T>
static void invoke(Archive &ar, T &t){
typedef typename remove_extent< T >::type value_type;
// convert integers to correct enum to load
// determine number of elements in the array. Consider the
// fact that some machines will align elements on boundries
// other than characters.
std::size_t current_count = sizeof(t) / (
static_cast<char *>(static_cast<void *>(&t[1]))
- static_cast<char *>(static_cast<void *>(&t[0]))
);
boost::serialization::collection_size_type count;
ar >> BOOST_SERIALIZATION_NVP(count);
if(static_cast<std::size_t>(count) > current_count)
boost::serialization::throw_exception(
archive::archive_exception(
boost::archive::archive_exception::array_size_too_short
)
);
ar >> serialization::make_array(static_cast<value_type*>(&t[0]),count);
}
};
} // detail
template<class Archive, class T>
inline void load(Archive & ar, T &t){
// if this assertion trips. It means we're trying to load a
// const object with a compiler that doesn't have correct
// funtion template ordering. On other compilers, this is
// handled below.
detail::check_const_loading< T >();
typedef
typename mpl::eval_if<is_pointer< T >,
mpl::identity<detail::load_pointer_type<Archive> >
,//else
typename mpl::eval_if<is_array< T >,
mpl::identity<detail::load_array_type<Archive> >
,//else
typename mpl::eval_if<is_enum< T >,
mpl::identity<detail::load_enum_type<Archive> >
,//else
mpl::identity<detail::load_non_pointer_type<Archive> >
>
>
>::type typex;
typex::invoke(ar, t);
}
} // namespace archive
} // namespace boost
#endif // BOOST_ARCHIVE_DETAIL_ISERIALIZER_HPP