verdnatura-chat/ios/Pods/Folly/folly/Memory.h

727 lines
22 KiB
C++

/*
* Copyright 2013-present Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cassert>
#include <cerrno>
#include <cstddef>
#include <cstdlib>
#include <exception>
#include <limits>
#include <memory>
#include <stdexcept>
#include <type_traits>
#include <utility>
#include <folly/ConstexprMath.h>
#include <folly/Likely.h>
#include <folly/Traits.h>
#include <folly/functional/Invoke.h>
#include <folly/lang/Align.h>
#include <folly/lang/Exception.h>
#include <folly/portability/Config.h>
#include <folly/portability/Malloc.h>
namespace folly {
#if _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600 || \
(defined(__ANDROID__) && (__ANDROID_API__ > 16)) || \
(defined(__APPLE__) && \
(__MAC_OS_X_VERSION_MIN_REQUIRED >= __MAC_10_6 || \
__IPHONE_OS_VERSION_MIN_REQUIRED >= __IPHONE_3_0))
inline void* aligned_malloc(size_t size, size_t align) {
// use posix_memalign, but mimic the behaviour of memalign
void* ptr = nullptr;
int rc = posix_memalign(&ptr, align, size);
return rc == 0 ? (errno = 0, ptr) : (errno = rc, nullptr);
}
inline void aligned_free(void* aligned_ptr) {
free(aligned_ptr);
}
#elif defined(_WIN32)
inline void* aligned_malloc(size_t size, size_t align) {
return _aligned_malloc(size, align);
}
inline void aligned_free(void* aligned_ptr) {
_aligned_free(aligned_ptr);
}
#else
inline void* aligned_malloc(size_t size, size_t align) {
return memalign(align, size);
}
inline void aligned_free(void* aligned_ptr) {
free(aligned_ptr);
}
#endif
namespace detail {
template <typename Alloc, size_t kAlign, bool kAllocate>
void rawOverAlignedImpl(Alloc const& alloc, size_t n, void*& raw) {
static_assert((kAlign & (kAlign - 1)) == 0, "Align must be a power of 2");
using AllocTraits = std::allocator_traits<Alloc>;
using T = typename AllocTraits::value_type;
constexpr bool kCanBypass = std::is_same<Alloc, std::allocator<T>>::value;
// BaseType is a type that gives us as much alignment as we need if
// we can get it naturally, otherwise it is aligned as max_align_t.
// kBaseAlign is both the alignment and size of this type.
constexpr size_t kBaseAlign = constexpr_min(kAlign, alignof(max_align_t));
using BaseType = std::aligned_storage_t<kBaseAlign, kBaseAlign>;
using BaseAllocTraits =
typename AllocTraits::template rebind_traits<BaseType>;
using BaseAlloc = typename BaseAllocTraits::allocator_type;
static_assert(
sizeof(BaseType) == kBaseAlign && alignof(BaseType) == kBaseAlign, "");
#if __cpp_sized_deallocation
if (kCanBypass && kAlign == kBaseAlign) {
// until std::allocator uses sized deallocation, it is worth the
// effort to bypass it when we are able
if (kAllocate) {
raw = ::operator new(n * sizeof(T));
} else {
::operator delete(raw, n * sizeof(T));
}
return;
}
#endif
if (kCanBypass && kAlign > kBaseAlign) {
// allocating as BaseType isn't sufficient to get alignment, but
// since we can bypass Alloc we can use something like posix_memalign
if (kAllocate) {
raw = aligned_malloc(n * sizeof(T), kAlign);
} else {
aligned_free(raw);
}
return;
}
// we're not allowed to bypass Alloc, or we don't want to
BaseAlloc a(alloc);
// allocation size is counted in sizeof(BaseType)
size_t quanta = (n * sizeof(T) + kBaseAlign - 1) / sizeof(BaseType);
if (kAlign <= kBaseAlign) {
// rebinding Alloc to BaseType is sufficient to get us the alignment
// we want, happy path
if (kAllocate) {
raw = static_cast<void*>(
std::addressof(*BaseAllocTraits::allocate(a, quanta)));
} else {
BaseAllocTraits::deallocate(
a,
std::pointer_traits<typename BaseAllocTraits::pointer>::pointer_to(
*static_cast<BaseType*>(raw)),
quanta);
}
return;
}
// Overaligned and custom allocator, our only option is to
// overallocate and store a delta to the actual allocation just
// before the returned ptr.
//
// If we give ourselves kAlign extra bytes, then since
// sizeof(BaseType) divides kAlign we can meet alignment while
// getting a prefix of one BaseType. If we happen to get a
// kAlign-aligned block, then we can return a pointer to underlying
// + kAlign, otherwise there will be at least kBaseAlign bytes in
// the unused prefix of the first kAlign-aligned block.
if (kAllocate) {
char* base = reinterpret_cast<char*>(std::addressof(
*BaseAllocTraits::allocate(a, quanta + kAlign / sizeof(BaseType))));
size_t byteDelta =
kAlign - (reinterpret_cast<uintptr_t>(base) & (kAlign - 1));
raw = static_cast<void*>(base + byteDelta);
static_cast<size_t*>(raw)[-1] = byteDelta;
} else {
size_t byteDelta = static_cast<size_t*>(raw)[-1];
char* base = static_cast<char*>(raw) - byteDelta;
BaseAllocTraits::deallocate(
a,
std::pointer_traits<typename BaseAllocTraits::pointer>::pointer_to(
*reinterpret_cast<BaseType*>(base)),
quanta + kAlign / sizeof(BaseType));
}
}
} // namespace detail
// Works like std::allocator_traits<Alloc>::allocate, but handles
// over-aligned types. Feel free to manually specify any power of two as
// the Align template arg. Must be matched with deallocateOverAligned.
// allocationBytesForOverAligned will give you the number of bytes that
// this function actually requests.
template <
typename Alloc,
size_t kAlign = alignof(typename std::allocator_traits<Alloc>::value_type)>
typename std::allocator_traits<Alloc>::pointer allocateOverAligned(
Alloc const& alloc,
size_t n) {
void* raw = nullptr;
detail::rawOverAlignedImpl<Alloc, kAlign, true>(alloc, n, raw);
return std::pointer_traits<typename std::allocator_traits<Alloc>::pointer>::
pointer_to(
*static_cast<typename std::allocator_traits<Alloc>::value_type*>(
raw));
}
template <
typename Alloc,
size_t kAlign = alignof(typename std::allocator_traits<Alloc>::value_type)>
void deallocateOverAligned(
Alloc const& alloc,
typename std::allocator_traits<Alloc>::pointer ptr,
size_t n) {
void* raw = static_cast<void*>(std::addressof(*ptr));
detail::rawOverAlignedImpl<Alloc, kAlign, false>(alloc, n, raw);
}
template <
typename Alloc,
size_t kAlign = alignof(typename std::allocator_traits<Alloc>::value_type)>
size_t allocationBytesForOverAligned(size_t n) {
static_assert((kAlign & (kAlign - 1)) == 0, "Align must be a power of 2");
using AllocTraits = std::allocator_traits<Alloc>;
using T = typename AllocTraits::value_type;
constexpr size_t kBaseAlign = constexpr_min(kAlign, alignof(max_align_t));
if (kAlign > kBaseAlign && std::is_same<Alloc, std::allocator<T>>::value) {
return n * sizeof(T);
} else {
size_t quanta = (n * sizeof(T) + kBaseAlign - 1) / kBaseAlign;
if (kAlign > kBaseAlign) {
quanta += kAlign / kBaseAlign;
}
return quanta * kBaseAlign;
}
}
/**
* For exception safety and consistency with make_shared. Erase me when
* we have std::make_unique().
*
* @author Louis Brandy (ldbrandy@fb.com)
* @author Xu Ning (xning@fb.com)
*/
#if __cplusplus >= 201402L || __cpp_lib_make_unique >= 201304L || \
(__ANDROID__ && __cplusplus >= 201300L) || _MSC_VER >= 1900
/* using override */ using std::make_unique;
#else
template <typename T, typename... Args>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Args&&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
// Allows 'make_unique<T[]>(10)'. (N3690 s20.9.1.4 p3-4)
template <typename T>
typename std::enable_if<std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(const size_t n) {
return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}
// Disallows 'make_unique<T[10]>()'. (N3690 s20.9.1.4 p5)
template <typename T, typename... Args>
typename std::enable_if<std::extent<T>::value != 0, std::unique_ptr<T>>::type
make_unique(Args&&...) = delete;
#endif
/**
* static_function_deleter
*
* So you can write this:
*
* using RSA_deleter = folly::static_function_deleter<RSA, &RSA_free>;
* auto rsa = std::unique_ptr<RSA, RSA_deleter>(RSA_new());
* RSA_generate_key_ex(rsa.get(), bits, exponent, nullptr);
* rsa = nullptr; // calls RSA_free(rsa.get())
*
* This would be sweet as well for BIO, but unfortunately BIO_free has signature
* int(BIO*) while we require signature void(BIO*). So you would need to make a
* wrapper for it:
*
* inline void BIO_free_fb(BIO* bio) { CHECK_EQ(1, BIO_free(bio)); }
* using BIO_deleter = folly::static_function_deleter<BIO, &BIO_free_fb>;
* auto buf = std::unique_ptr<BIO, BIO_deleter>(BIO_new(BIO_s_mem()));
* buf = nullptr; // calls BIO_free(buf.get())
*/
template <typename T, void (*f)(T*)>
struct static_function_deleter {
void operator()(T* t) const {
f(t);
}
};
/**
* to_shared_ptr
*
* Convert unique_ptr to shared_ptr without specifying the template type
* parameter and letting the compiler deduce it.
*
* So you can write this:
*
* auto sptr = to_shared_ptr(getSomethingUnique<T>());
*
* Instead of this:
*
* auto sptr = shared_ptr<T>(getSomethingUnique<T>());
*
* Useful when `T` is long, such as:
*
* using T = foobar::FooBarAsyncClient;
*/
template <typename T, typename D>
std::shared_ptr<T> to_shared_ptr(std::unique_ptr<T, D>&& ptr) {
return std::shared_ptr<T>(std::move(ptr));
}
/**
* to_weak_ptr
*
* Make a weak_ptr and return it from a shared_ptr without specifying the
* template type parameter and letting the compiler deduce it.
*
* So you can write this:
*
* auto wptr = to_weak_ptr(getSomethingShared<T>());
*
* Instead of this:
*
* auto wptr = weak_ptr<T>(getSomethingShared<T>());
*
* Useful when `T` is long, such as:
*
* using T = foobar::FooBarAsyncClient;
*/
template <typename T>
std::weak_ptr<T> to_weak_ptr(const std::shared_ptr<T>& ptr) {
return std::weak_ptr<T>(ptr);
}
namespace detail {
template <typename T>
struct lift_void_to_char {
using type = T;
};
template <>
struct lift_void_to_char<void> {
using type = char;
};
} // namespace detail
/**
* SysAllocator
*
* Resembles std::allocator, the default Allocator, but wraps std::malloc and
* std::free.
*/
template <typename T>
class SysAllocator {
private:
using Self = SysAllocator<T>;
public:
using value_type = T;
T* allocate(size_t count) {
using lifted = typename detail::lift_void_to_char<T>::type;
auto const p = std::malloc(sizeof(lifted) * count);
if (!p) {
throw_exception<std::bad_alloc>();
}
return static_cast<T*>(p);
}
void deallocate(T* p, size_t /* count */) {
std::free(p);
}
friend bool operator==(Self const&, Self const&) noexcept {
return true;
}
friend bool operator!=(Self const&, Self const&) noexcept {
return false;
}
};
class DefaultAlign {
private:
using Self = DefaultAlign;
std::size_t align_;
public:
explicit DefaultAlign(std::size_t align) noexcept : align_(align) {
assert(!(align_ < sizeof(void*)) && bool("bad align: too small"));
assert(!(align_ & (align_ - 1)) && bool("bad align: not power-of-two"));
}
std::size_t operator()() const noexcept {
return align_;
}
friend bool operator==(Self const& a, Self const& b) noexcept {
return a.align_ == b.align_;
}
friend bool operator!=(Self const& a, Self const& b) noexcept {
return a.align_ != b.align_;
}
};
template <std::size_t Align>
class FixedAlign {
private:
static_assert(!(Align < sizeof(void*)), "bad align: too small");
static_assert(!(Align & (Align - 1)), "bad align: not power-of-two");
using Self = FixedAlign<Align>;
public:
constexpr std::size_t operator()() const noexcept {
return Align;
}
friend bool operator==(Self const&, Self const&) noexcept {
return true;
}
friend bool operator!=(Self const&, Self const&) noexcept {
return false;
}
};
/**
* AlignedSysAllocator
*
* Resembles std::allocator, the default Allocator, but wraps aligned_malloc and
* aligned_free.
*
* Accepts a policy parameter for providing the alignment, which must:
* * be invocable as std::size_t() noexcept, returning the alignment
* * be noexcept-copy-constructible
* * have noexcept operator==
* * have noexcept operator!=
* * not be final
*
* DefaultAlign and FixedAlign<std::size_t>, provided above, are valid policies.
*/
template <typename T, typename Align = DefaultAlign>
class AlignedSysAllocator : private Align {
private:
using Self = AlignedSysAllocator<T, Align>;
template <typename, typename>
friend class AlignedSysAllocator;
constexpr Align const& align() const {
return *this;
}
public:
static_assert(std::is_nothrow_copy_constructible<Align>::value, "");
static_assert(is_nothrow_invocable_r<std::size_t, Align>::value, "");
using value_type = T;
using propagate_on_container_copy_assignment = std::true_type;
using propagate_on_container_move_assignment = std::true_type;
using propagate_on_container_swap = std::true_type;
using Align::Align;
// TODO: remove this ctor, which is required only by gcc49
template <
typename S = Align,
_t<std::enable_if<std::is_default_constructible<S>::value, int>> = 0>
constexpr AlignedSysAllocator() noexcept(noexcept(Align())) : Align() {}
template <typename U>
constexpr explicit AlignedSysAllocator(
AlignedSysAllocator<U, Align> const& other) noexcept
: Align(other.align()) {}
T* allocate(size_t count) {
using lifted = typename detail::lift_void_to_char<T>::type;
auto const p = aligned_malloc(sizeof(lifted) * count, align()());
if (!p) {
if (FOLLY_UNLIKELY(errno != ENOMEM)) {
std::terminate();
}
throw_exception<std::bad_alloc>();
}
return static_cast<T*>(p);
}
void deallocate(T* p, size_t /* count */) {
aligned_free(p);
}
friend bool operator==(Self const& a, Self const& b) noexcept {
return a.align() == b.align();
}
friend bool operator!=(Self const& a, Self const& b) noexcept {
return a.align() != b.align();
}
};
/**
* CxxAllocatorAdaptor
*
* A type conforming to C++ concept Allocator, delegating operations to an
* unowned Inner which has this required interface:
*
* void* allocate(std::size_t)
* void deallocate(void*, std::size_t)
*
* Note that Inner is *not* a C++ Allocator.
*/
template <typename T, class Inner>
class CxxAllocatorAdaptor {
private:
using Self = CxxAllocatorAdaptor<T, Inner>;
template <typename U, typename UAlloc>
friend class CxxAllocatorAdaptor;
std::reference_wrapper<Inner> ref_;
public:
using value_type = T;
using propagate_on_container_copy_assignment = std::true_type;
using propagate_on_container_move_assignment = std::true_type;
using propagate_on_container_swap = std::true_type;
explicit CxxAllocatorAdaptor(Inner& ref) : ref_(ref) {}
template <typename U>
explicit CxxAllocatorAdaptor(CxxAllocatorAdaptor<U, Inner> const& other)
: ref_(other.ref_) {}
T* allocate(std::size_t n) {
using lifted = typename detail::lift_void_to_char<T>::type;
return static_cast<T*>(ref_.get().allocate(sizeof(lifted) * n));
}
void deallocate(T* p, std::size_t n) {
using lifted = typename detail::lift_void_to_char<T>::type;
ref_.get().deallocate(p, sizeof(lifted) * n);
}
friend bool operator==(Self const& a, Self const& b) noexcept {
return std::addressof(a.ref_.get()) == std::addressof(b.ref_.get());
}
friend bool operator!=(Self const& a, Self const& b) noexcept {
return std::addressof(a.ref_.get()) != std::addressof(b.ref_.get());
}
};
/*
* allocator_delete
*
* A deleter which automatically works with a given allocator.
*
* Derives from the allocator to take advantage of the empty base
* optimization when possible.
*/
template <typename Alloc>
class allocator_delete : private std::remove_reference<Alloc>::type {
private:
using allocator_type = typename std::remove_reference<Alloc>::type;
using allocator_traits = std::allocator_traits<allocator_type>;
using value_type = typename allocator_traits::value_type;
using pointer = typename allocator_traits::pointer;
public:
allocator_delete() = default;
allocator_delete(allocator_delete const&) = default;
allocator_delete(allocator_delete&&) = default;
allocator_delete& operator=(allocator_delete const&) = default;
allocator_delete& operator=(allocator_delete&&) = default;
explicit allocator_delete(const allocator_type& alloc)
: allocator_type(alloc) {}
explicit allocator_delete(allocator_type&& alloc)
: allocator_type(std::move(alloc)) {}
template <typename U>
allocator_delete(const allocator_delete<U>& other)
: allocator_type(other.get_allocator()) {}
allocator_type const& get_allocator() const {
return *this;
}
void operator()(pointer p) const {
auto alloc = get_allocator();
allocator_traits::destroy(alloc, p);
allocator_traits::deallocate(alloc, p, 1);
}
};
/**
* allocate_unique, like std::allocate_shared but for std::unique_ptr
*/
template <typename T, typename Alloc, typename... Args>
std::unique_ptr<T, allocator_delete<Alloc>> allocate_unique(
Alloc const& alloc,
Args&&... args) {
using traits = std::allocator_traits<Alloc>;
struct DeferCondDeallocate {
bool& cond;
Alloc& copy;
T* p;
~DeferCondDeallocate() {
if (FOLLY_UNLIKELY(!cond)) {
traits::deallocate(copy, p, 1);
}
}
};
auto copy = alloc;
auto const p = traits::allocate(copy, 1);
{
bool constructed = false;
DeferCondDeallocate handler{constructed, copy, p};
traits::construct(copy, p, static_cast<Args&&>(args)...);
constructed = true;
}
return {p, allocator_delete<Alloc>(std::move(copy))};
}
struct SysBufferDeleter {
void operator()(void* ptr) {
std::free(ptr);
}
};
using SysBufferUniquePtr = std::unique_ptr<void, SysBufferDeleter>;
inline SysBufferUniquePtr allocate_sys_buffer(std::size_t size) {
auto p = std::malloc(size);
if (!p) {
throw_exception<std::bad_alloc>();
}
return {p, {}};
}
/**
* AllocatorHasTrivialDeallocate
*
* Unambiguously inherits std::integral_constant<bool, V> for some bool V.
*
* Describes whether a C++ Aallocator has trivial, i.e. no-op, deallocate().
*
* Also may be used to describe types which may be used with
* CxxAllocatorAdaptor.
*/
template <typename Alloc>
struct AllocatorHasTrivialDeallocate : std::false_type {};
template <typename T, class Alloc>
struct AllocatorHasTrivialDeallocate<CxxAllocatorAdaptor<T, Alloc>>
: AllocatorHasTrivialDeallocate<Alloc> {};
namespace detail {
// note that construct and destroy here are methods, not short names for
// the constructor and destructor
FOLLY_CREATE_MEMBER_INVOKE_TRAITS(AllocatorConstruct_, construct);
FOLLY_CREATE_MEMBER_INVOKE_TRAITS(AllocatorDestroy_, destroy);
template <typename Void, typename Alloc, typename... Args>
struct AllocatorCustomizesConstruct_
: AllocatorConstruct_::template is_invocable<Alloc, Args...> {};
template <typename Alloc, typename... Args>
struct AllocatorCustomizesConstruct_<
void_t<typename Alloc::folly_has_default_object_construct>,
Alloc,
Args...> : Negation<typename Alloc::folly_has_default_object_construct> {};
template <typename Void, typename Alloc, typename... Args>
struct AllocatorCustomizesDestroy_
: AllocatorDestroy_::template is_invocable<Alloc, Args...> {};
template <typename Alloc, typename... Args>
struct AllocatorCustomizesDestroy_<
void_t<typename Alloc::folly_has_default_object_destroy>,
Alloc,
Args...> : Negation<typename Alloc::folly_has_default_object_destroy> {};
} // namespace detail
/**
* AllocatorHasDefaultObjectConstruct
*
* AllocatorHasDefaultObjectConstruct<A, T, Args...> unambiguously
* inherits std::integral_constant<bool, V>, where V will be true iff
* the effect of std::allocator_traits<A>::construct(a, p, args...) is
* the same as new (static_cast<void*>(p)) T(args...). If true then
* any optimizations applicable to object construction (relying on
* std::is_trivially_copyable<T>, for example) can be applied to objects
* in an allocator-aware container using an allocation of type A.
*
* Allocator types can override V by declaring a type alias for
* folly_has_default_object_construct. It is helpful to do this if you
* define a custom allocator type that defines a construct method, but
* that method doesn't do anything except call placement new.
*/
template <typename Alloc, typename T, typename... Args>
struct AllocatorHasDefaultObjectConstruct
: Negation<
detail::AllocatorCustomizesConstruct_<void, Alloc, T*, Args...>> {};
template <typename Value, typename T, typename... Args>
struct AllocatorHasDefaultObjectConstruct<std::allocator<Value>, T, Args...>
: std::true_type {};
/**
* AllocatorHasDefaultObjectDestroy
*
* AllocatorHasDefaultObjectDestroy<A, T> unambiguously inherits
* std::integral_constant<bool, V>, where V will be true iff the effect
* of std::allocator_traits<A>::destroy(a, p) is the same as p->~T().
* If true then optimizations applicable to object destruction (relying
* on std::is_trivially_destructible<T>, for example) can be applied to
* objects in an allocator-aware container using an allocator of type A.
*
* Allocator types can override V by declaring a type alias for
* folly_has_default_object_destroy. It is helpful to do this if you
* define a custom allocator type that defines a destroy method, but that
* method doesn't do anything except call the object's destructor.
*/
template <typename Alloc, typename T>
struct AllocatorHasDefaultObjectDestroy
: Negation<detail::AllocatorCustomizesDestroy_<void, Alloc, T*>> {};
template <typename Value, typename T>
struct AllocatorHasDefaultObjectDestroy<std::allocator<Value>, T>
: std::true_type {};
} // namespace folly