verdnatura-chat/ios/Pods/boost-for-react-native/boost/hana/functional/demux.hpp

270 lines
9.6 KiB
C++

/*!
@file
Defines `boost::hana::demux`.
@copyright Louis Dionne 2013-2016
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_HANA_FUNCTIONAL_DEMUX_HPP
#define BOOST_HANA_FUNCTIONAL_DEMUX_HPP
#include <boost/hana/basic_tuple.hpp>
#include <boost/hana/config.hpp>
#include <boost/hana/detail/decay.hpp>
#include <cstddef>
#include <utility>
BOOST_HANA_NAMESPACE_BEGIN
//! @ingroup group-functional
//! Invoke a function with the results of invoking other functions
//! on its arguments.
//!
//! Specifically, `demux(f)(g...)` is a function such that
//! @code
//! demux(f)(g...)(x...) == f(g(x...)...)
//! @endcode
//!
//! Each `g` is called with all the arguments, and then `f` is called
//! with the result of each `g`. Hence, the arity of `f` must match
//! the number of `g`s.
//!
//! This is called `demux` because of a vague similarity between this
//! device and a demultiplexer in signal processing. `demux` takes what
//! can be seen as a continuation (`f`), a bunch of functions to split a
//! signal (`g...`) and zero or more arguments representing the signal
//! (`x...`). Then, it calls the continuation with the result of
//! splitting the signal with whatever functions where given.
//!
//! @note
//! When used with two functions only, `demux` is associative. In other
//! words (and noting `demux(f, g) = demux(f)(g)` to ease the notation),
//! it is true that `demux(demux(f, g), h) == demux(f, demux(g, h))`.
//!
//!
//! Signature
//! ---------
//! The signature of `demux` is
//! \f[
//! \mathtt{demux} :
//! (B_1 \times \dotsb \times B_n \to C)
//! \to ((A_1 \times \dotsb \times A_n \to B_1)
//! \times \dotsb
//! \times (A_1 \times \dotsb \times A_n \to B_n))
//! \to (A_1 \times \dotsb \times A_n \to C)
//! \f]
//!
//! This can be rewritten more tersely as
//! \f[
//! \mathtt{demux} :
//! \left(\prod_{i=1}^n B_i \to C \right)
//! \to \prod_{j=1}^n \left(\prod_{i=1}^n A_i \to B_j \right)
//! \to \left(\prod_{i=1}^n A_i \to C \right)
//! \f]
//!
//!
//! Link with normal composition
//! ----------------------------
//! The signature of `compose` is
//! \f[
//! \mathtt{compose} : (B \to C) \times (A \to B) \to (A \to C)
//! \f]
//!
//! A valid observation is that this coincides exactly with the type
//! of `demux` when used with a single unary function. Actually, both
//! functions are equivalent:
//! @code
//! demux(f)(g)(x) == compose(f, g)(x)
//! @endcode
//!
//! However, let's now consider the curried version of `compose`,
//! `curry<2>(compose)`:
//! \f[
//! \mathtt{curry_2(compose)} : (B \to C) \to ((A \to B) \to (A \to C))
//! \f]
//!
//! For the rest of this explanation, we'll just consider the curried
//! version of `compose` and so we'll use `compose` instead of
//! `curry<2>(compose)` to lighten the notation. With currying, we can
//! now consider `compose` applied to itself:
//! \f[
//! \mathtt{compose(compose, compose)} :
//! (B \to C) \to (A_1 \to A_2 \to B) \to (A_1 \to A_2 \to C)
//! \f]
//!
//! If we uncurry deeply the above expression, we obtain
//! \f[
//! \mathtt{compose(compose, compose)} :
//! (B \to C) \times (A_1 \times A_2 \to B) \to (A_1 \times A_2 \to C)
//! \f]
//!
//! This signature is exactly the same as that of `demux` when given a
//! single binary function, and indeed they are equivalent definitions.
//! We can also generalize this further by considering
//! `compose(compose(compose, compose), compose)`:
//! \f[
//! \mathtt{compose(compose(compose, compose), compose)} :
//! (B \to C) \to (A_1 \to A_2 \to A_3 \to B)
//! \to (A_1 \to A_2 \to A_3 \to C)
//! \f]
//!
//! which uncurries to
//! \f[
//! \mathtt{compose(compose(compose, compose), compose)} :
//! (B \to C) \times (A_1 \times A_2 \times A_3 \to B)
//! \to (A_1 \times A_2 \times A_3 \to C)
//! \f]
//!
//! This signature is exactly the same as that of `demux` when given a
//! single ternary function. Hence, for a single n-ary function `g`,
//! `demux(f)(g)` is equivalent to the n-times composition of `compose`
//! with itself, applied to `g` and `f`:
//! @code
//! demux(f)(g) == fold_left([compose, ..., compose], id, compose)(g, f)
//! // ^^^^^^^^^^^^^^^^^^^^^ n times
//! @endcode
//!
//! More information on this insight can be seen [here][1]. Also, I'm
//! not sure how this insight could be generalized to more than one
//! function `g`, or if that is even possible.
//!
//!
//! Proof of associativity in the binary case
//! -----------------------------------------
//! As explained above, `demux` is associative when it is used with
//! two functions only. Indeed, given functions `f`, `g` and `h` with
//! suitable signatures, we have
//! @code
//! demux(f)(demux(g)(h))(x...) == f(demux(g)(h)(x...))
//! == f(g(h(x...)))
//! @endcode
//!
//! On the other hand, we have
//! @code
//! demux(demux(f)(g))(h)(x...) == demux(f)(g)(h(x...))
//! == f(g(h(x...)))
//! @endcode
//!
//! and hence `demux` is associative in the binary case.
//!
//!
//! Example
//! -------
//! @include example/functional/demux.cpp
//!
//! [1]: http://stackoverflow.com/q/5821089/627587
#ifdef BOOST_HANA_DOXYGEN_INVOKED
constexpr auto demux = [](auto&& f) {
return [perfect-capture](auto&& ...g) {
return [perfect-capture](auto&& ...x) -> decltype(auto) {
// x... can't be forwarded unless there is a single g
// function, or that could cause double-moves.
return forwarded(f)(forwarded(g)(x...)...);
};
};
};
#else
template <typename F>
struct pre_demux_t;
struct make_pre_demux_t {
struct secret { };
template <typename F>
constexpr pre_demux_t<typename detail::decay<F>::type> operator()(F&& f) const {
return {static_cast<F&&>(f)};
}
};
template <typename Indices, typename F, typename ...G>
struct demux_t;
template <typename F>
struct pre_demux_t {
F f;
template <typename ...G>
constexpr demux_t<std::make_index_sequence<sizeof...(G)>, F,
typename detail::decay<G>::type...>
operator()(G&& ...g) const& {
return {make_pre_demux_t::secret{}, this->f, static_cast<G&&>(g)...};
}
template <typename ...G>
constexpr demux_t<std::make_index_sequence<sizeof...(G)>, F,
typename detail::decay<G>::type...>
operator()(G&& ...g) && {
return {make_pre_demux_t::secret{}, static_cast<F&&>(this->f), static_cast<G&&>(g)...};
}
};
template <std::size_t ...n, typename F, typename ...G>
struct demux_t<std::index_sequence<n...>, F, G...> {
template <typename ...T>
constexpr demux_t(make_pre_demux_t::secret, T&& ...t)
: storage_{static_cast<T&&>(t)...}
{ }
basic_tuple<F, G...> storage_;
template <typename ...X>
constexpr decltype(auto) operator()(X&& ...x) const& {
return hana::get_impl<0>(storage_)(
hana::get_impl<n+1>(storage_)(x...)...
);
}
template <typename ...X>
constexpr decltype(auto) operator()(X&& ...x) & {
return hana::get_impl<0>(storage_)(
hana::get_impl<n+1>(storage_)(x...)...
);
}
template <typename ...X>
constexpr decltype(auto) operator()(X&& ...x) && {
return static_cast<F&&>(hana::get_impl<0>(storage_))(
static_cast<G&&>(hana::get_impl<n+1>(storage_))(x...)...
);
}
};
template <typename F, typename G>
struct demux_t<std::index_sequence<0>, F, G> {
template <typename ...T>
constexpr demux_t(make_pre_demux_t::secret, T&& ...t)
: storage_{static_cast<T&&>(t)...}
{ }
basic_tuple<F, G> storage_;
template <typename ...X>
constexpr decltype(auto) operator()(X&& ...x) const& {
return hana::get_impl<0>(storage_)(
hana::get_impl<1>(storage_)(static_cast<X&&>(x)...)
);
}
template <typename ...X>
constexpr decltype(auto) operator()(X&& ...x) & {
return hana::get_impl<0>(storage_)(
hana::get_impl<1>(storage_)(static_cast<X&&>(x)...)
);
}
template <typename ...X>
constexpr decltype(auto) operator()(X&& ...x) && {
return static_cast<F&&>(hana::get_impl<0>(storage_))(
static_cast<G&&>(hana::get_impl<1>(storage_))(static_cast<X&&>(x)...)
);
}
};
constexpr make_pre_demux_t demux{};
#endif
BOOST_HANA_NAMESPACE_END
#endif // !BOOST_HANA_FUNCTIONAL_DEMUX_HPP